Github user yhuai commented on a diff in the pull request:
https://github.com/apache/spark/pull/11583#discussion_r61763969
--- Diff:
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/PivotFirst.scala
---
@@ -0,0 +1,152 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.catalyst.expressions.aggregate
+
+import scala.collection.immutable.HashMap
+
+import org.apache.spark.sql.catalyst.InternalRow
+import org.apache.spark.sql.catalyst.expressions._
+import org.apache.spark.sql.catalyst.util.GenericArrayData
+import org.apache.spark.sql.types._
+
+object PivotFirst {
+
+ def supportsDataType(dataType: DataType): Boolean =
updateFunction.isDefinedAt(dataType)
+
+ // Currently UnsafeRow does not support the generic update method (throws
+ // UnsupportedOperationException), so we need to explicitly support each
DataType.
+ private val updateFunction: PartialFunction[DataType, (MutableRow, Int,
Any) => Unit] = {
+ case DoubleType =>
+ (row, offset, value) => row.setDouble(offset,
value.asInstanceOf[Double])
+ case IntegerType =>
+ (row, offset, value) => row.setInt(offset, value.asInstanceOf[Int])
+ case LongType =>
+ (row, offset, value) => row.setLong(offset, value.asInstanceOf[Long])
+ case FloatType =>
+ (row, offset, value) => row.setFloat(offset,
value.asInstanceOf[Float])
+ case BooleanType =>
+ (row, offset, value) => row.setBoolean(offset,
value.asInstanceOf[Boolean])
+ case ShortType =>
+ (row, offset, value) => row.setShort(offset,
value.asInstanceOf[Short])
+ case ByteType =>
+ (row, offset, value) => row.setByte(offset, value.asInstanceOf[Byte])
+ case d: DecimalType =>
+ (row, offset, value) => row.setDecimal(offset,
value.asInstanceOf[Decimal], d.precision)
+ }
+}
+
+/**
+ * PivotFirst is a aggregate function used in the second phase of a two
phase pivot to do the
+ * required rearrangement of values into pivoted form.
+ *
+ * For example on an input of
+ * A | B
+ * --+--
+ * x | 1
+ * y | 2
+ * z | 3
+ *
+ * with pivotColumn=A, valueColumn=B, and pivotColumnValues=[z,y] the
output is [3,2].
+ *
+ * @param pivotColumn column that determines which output position to put
valueColumn in.
+ * @param valueColumn the column that is being rearranged.
+ * @param pivotColumnValues the list of pivotColumn values in the order of
desired output. Values
+ * not listed here will be ignored.
+ */
+case class PivotFirst(
+ pivotColumn: Expression,
+ valueColumn: Expression,
+ pivotColumnValues: Seq[Any],
+ mutableAggBufferOffset: Int = 0,
+ inputAggBufferOffset: Int = 0) extends ImperativeAggregate {
+
+ override val children: Seq[Expression] = pivotColumn :: valueColumn ::
Nil
+
+ override lazy val inputTypes: Seq[AbstractDataType] =
children.map(_.dataType)
+
+ override val nullable: Boolean = false
+
+ val valueDataType = valueColumn.dataType
+
+ override val dataType: DataType = ArrayType(valueDataType)
+
+ val pivotIndex = HashMap(pivotColumnValues.zipWithIndex: _*)
+
+ val indexSize = pivotIndex.size
+
+ private val updateRow: (MutableRow, Int, Any) => Unit =
PivotFirst.updateFunction(valueDataType)
+
+ override def update(mutableAggBuffer: MutableRow, inputRow:
InternalRow): Unit = {
+ val pivotColValue = pivotColumn.eval(inputRow)
+ if (pivotColValue != null) {
+ // We ignore rows whose pivot column value is not in the list of
pivot column values.
+ val index = pivotIndex.getOrElse(pivotColValue, -1)
+ if (index >= 0) {
+ val value = valueColumn.eval(inputRow)
+ if (value != null) {
+ updateRow(mutableAggBuffer, mutableAggBufferOffset + index,
value)
+ }
+ }
+ }
+ }
+
+ override def merge(mutableAggBuffer: MutableRow, inputAggBuffer:
InternalRow): Unit = {
+ for (i <- 0 until indexSize) {
+ if (!inputAggBuffer.isNullAt(inputAggBufferOffset + i)) {
+ val value = inputAggBuffer.get(inputAggBufferOffset + i,
valueDataType)
+ updateRow(mutableAggBuffer, mutableAggBufferOffset + i, value)
+ }
+ }
+ }
+
+ override def initialize(mutableAggBuffer: MutableRow): Unit =
valueDataType match {
+ case d: DecimalType =>
+ // Per doc of setDecimal we need to do this instead of setNullAt for
DecimalType.
+ for (i <- 0 until indexSize) {
+ mutableAggBuffer.setDecimal(mutableAggBufferOffset + i, null,
d.precision)
+ }
+ case _ =>
+ for (i <- 0 until indexSize) {
+ mutableAggBuffer.setNullAt(mutableAggBufferOffset + i)
+ }
+ }
+
+ override def eval(input: InternalRow): Any = {
+ val result = new Array[Any](indexSize)
+ for (i <- 0 until indexSize) {
+ result(i) = input.get(mutableAggBufferOffset + i, valueDataType)
+ }
+ new GenericArrayData(result)
+ }
+
+ override def withNewInputAggBufferOffset(newInputAggBufferOffset: Int):
ImperativeAggregate =
+ copy(inputAggBufferOffset = newInputAggBufferOffset)
+
+ override def withNewMutableAggBufferOffset(newMutableAggBufferOffset:
Int): ImperativeAggregate =
+ copy(mutableAggBufferOffset = newMutableAggBufferOffset)
+
+
+ override lazy val aggBufferAttributes: Seq[AttributeReference] =
+ pivotIndex.toList.sortBy(_._2).map(kv =>
AttributeReference(kv._1.toString, valueDataType)())
--- End diff --
How about we avoid of using lazy val for `aggBufferAttributes`,
`aggBufferSchema`, and `inputAggBufferAttributes`?
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]