Github user sethah commented on a diff in the pull request:

    https://github.com/apache/spark/pull/13262#discussion_r64602162
  
    --- Diff: docs/ml-advanced.md ---
    @@ -4,10 +4,85 @@ title: Advanced topics - spark.ml
     displayTitle: Advanced topics - spark.ml
     ---
     
    -# Optimization of linear methods
    +* Table of contents
    +{:toc}
    +
    +`\[
    +\newcommand{\R}{\mathbb{R}}
    +\newcommand{\E}{\mathbb{E}} 
    +\newcommand{\x}{\mathbf{x}}
    +\newcommand{\y}{\mathbf{y}}
    +\newcommand{\wv}{\mathbf{w}}
    +\newcommand{\av}{\mathbf{\alpha}}
    +\newcommand{\bv}{\mathbf{b}}
    +\newcommand{\N}{\mathbb{N}}
    +\newcommand{\id}{\mathbf{I}} 
    +\newcommand{\ind}{\mathbf{1}} 
    +\newcommand{\0}{\mathbf{0}} 
    +\newcommand{\unit}{\mathbf{e}} 
    +\newcommand{\one}{\mathbf{1}} 
    +\newcommand{\zero}{\mathbf{0}}
    +\]`
    +
    +# Optimization of linear methods (developer)
    +
    +## Limited-memory BFGS (L-BFGS)
    +[L-BFGS](http://en.wikipedia.org/wiki/Limited-memory_BFGS) is an 
optimization 
    +algorithm in the family of quasi-Newton methods to solve the optimization 
problems of the form 
    +`$\min_{\wv \in\R^d} \; f(\wv)$`. The L-BFGS method approximates the 
objective function locally as a 
    +quadratic without evaluating the second partial derivatives of the 
objective function to construct the 
    +Hessian matrix. The Hessian matrix is approximated by previous gradient 
evaluations, so there is no 
    +vertical scalability issue (the number of training features) unlike 
computing the Hessian matrix 
    +explicitly in Newton's method. As a result, L-BFGS often achieves faster 
convergence compared with 
    +other first-order optimizations.
     
    -The optimization algorithm underlying the implementation is called
     [Orthant-Wise Limited-memory
     
QuasiNewton](http://research-srv.microsoft.com/en-us/um/people/jfgao/paper/icml07scalable.pdf)
    -(OWL-QN). It is an extension of L-BFGS that can effectively handle L1
    -regularization and elastic net.
    +(OWL-QN) is an extension of L-BFGS that can effectively handle L1 
regularization and elastic net.
    +
    +L-BFGS is used as a solver for 
[LinearRegression](api/scala/index.html#org.apache.spark.ml.regression.LinearRegression),
    
+[LogisticRegression](api/scala/index.html#org.apache.spark.ml.classification.LogisticRegression),
    
+[AFTSurvivalRegression](api/scala/index.html#org.apache.spark.ml.regression.AFTSurvivalRegression)
    +and 
[MultilayerPerceptronClassifier](api/scala/index.html#org.apache.spark.ml.classification.MultilayerPerceptronClassifier).
    +
    +MLlib L-BFGS solver calls the corresponding implementation in 
[breeze](https://github.com/scalanlp/breeze/blob/master/math/src/main/scala/breeze/optimize/LBFGS.scala).
    +
    +## Normal equation solver for weighted least squares (normal)
    --- End diff --
    
    So this is supposed to be the actual `String` value they should set the 
solver param to if they want to use it? I don't see the point of including that 
here since we document in the API param docs, and it could change and leave the 
user guide out of sync. Further, I don't think most people will realize that is 
what those mean. It might be better to put them in quotes (e.g. "normal"), but 
I'd vote for not having them at all.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to