Github user MLnick commented on the issue:
https://github.com/apache/spark/pull/12896
Another option is to make `predictionCol` nullable and return `null`
predictions. The `drop` strategy can still apply (though it will need to be a
custom `filter` rather than `df.na.drop`), but it makes it totally clear when a
prediction is "missing" vs `NaN`.
However, is it even possible to get a bunch of `NaN`s, e.g. if the model
somehow diverged (I don't think that's even possible with ALS?). So, this may
just add needless complexity.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]