Github user gatorsmile commented on a diff in the pull request:
https://github.com/apache/spark/pull/14207#discussion_r73968228
--- Diff:
sql/core/src/main/scala/org/apache/spark/sql/execution/command/createDataSourceTables.scala
---
@@ -95,17 +95,39 @@ case class CreateDataSourceTableCommand(
}
// Create the relation to validate the arguments before writing the
metadata to the metastore.
- DataSource(
- sparkSession = sparkSession,
- userSpecifiedSchema = userSpecifiedSchema,
- className = provider,
- bucketSpec = None,
- options = optionsWithPath).resolveRelation(checkPathExist = false)
+ val dataSource: BaseRelation =
+ DataSource(
+ sparkSession = sparkSession,
+ userSpecifiedSchema = userSpecifiedSchema,
+ className = provider,
+ bucketSpec = None,
+ options = optionsWithPath).resolveRelation(checkPathExist = false)
+
+ val partitionColumns = if (userSpecifiedSchema.nonEmpty) {
+ userSpecifiedPartitionColumns
+ } else {
+ val res = dataSource match {
+ case r: HadoopFsRelation => r.partitionSchema.fieldNames
+ case _ => Array.empty[String]
+ }
+ if (userSpecifiedPartitionColumns.length > 0) {
+ // The table does not have a specified schema, which means that
the schema will be inferred
+ // when we load the table. So, we are not expecting partition
columns and we will discover
+ // partitions when we load the table. However, if there are
specified partition columns,
+ // we simply ignore them and provide a warning message.
+ logWarning(
+ s"Specified partition columns
(${userSpecifiedPartitionColumns.mkString(",")}) will be " +
+ s"ignored. The schema and partition columns of table
$tableIdent are inferred. " +
+ s"Schema: ${dataSource.schema.simpleString}; " +
+ s"Partition columns: ${res.mkString("(", ", ", ")")}")
+ }
+ res
+ }
CreateDataSourceTableUtils.createDataSourceTable(
sparkSession = sparkSession,
tableIdent = tableIdent,
- userSpecifiedSchema = userSpecifiedSchema,
+ schema = dataSource.schema,
--- End diff --
Here, `dataSource.schema` could be inferred. Previously, we do not store
the inferred schema. After this PR, we did and thus we use `dataSource.schema`.
Actually, after re-checking the code, I found the schema might be adjusted
a little even if users specify the schema. For example, the nullability could
be changed :
https://github.com/apache/spark/blob/64529b186a1c33740067cc7639d630bc5b9ae6e8/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/DataSource.scala#L407
I think we should make such a change but maybe we should test and log it?
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]