Github user yhuai commented on a diff in the pull request:
https://github.com/apache/spark/pull/14155#discussion_r75063920
--- Diff:
sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveExternalCatalog.scala ---
@@ -144,16 +161,147 @@ private[spark] class HiveExternalCatalog(client:
HiveClient, hadoopConf: Configu
assert(tableDefinition.identifier.database.isDefined)
val db = tableDefinition.identifier.database.get
requireDbExists(db)
+ verifyTableProperties(tableDefinition)
+
+ if (tableDefinition.provider == Some("hive") ||
tableDefinition.tableType == VIEW) {
+ client.createTable(tableDefinition, ignoreIfExists)
+ } else {
+ val tableProperties = tableMetadataToProperties(tableDefinition)
+
+ def newSparkSQLSpecificMetastoreTable(): CatalogTable = {
+ tableDefinition.copy(
+ schema = new StructType,
+ partitionColumnNames = Nil,
+ bucketSpec = None,
+ properties = tableDefinition.properties ++ tableProperties)
+ }
+
+ def newHiveCompatibleMetastoreTable(serde: HiveSerDe, path: String):
CatalogTable = {
+ tableDefinition.copy(
+ storage = tableDefinition.storage.copy(
+ locationUri = Some(new Path(path).toUri.toString),
+ inputFormat = serde.inputFormat,
+ outputFormat = serde.outputFormat,
+ serde = serde.serde
+ ),
+ properties = tableDefinition.properties ++ tableProperties)
+ }
+
+ val qualifiedTableName = tableDefinition.identifier.quotedString
+ val maybeSerde =
HiveSerDe.sourceToSerDe(tableDefinition.provider.get)
+ val maybePath = new
CaseInsensitiveMap(tableDefinition.storage.properties).get("path")
+ val skipHiveMetadata = tableDefinition.storage.properties
+ .getOrElse("skipHiveMetadata", "false").toBoolean
+
+ val (hiveCompatibleTable, logMessage) = (maybeSerde, maybePath)
match {
+ case _ if skipHiveMetadata =>
+ val message =
+ s"Persisting data source table $qualifiedTableName into Hive
metastore in" +
+ "Spark SQL specific format, which is NOT compatible with
Hive."
+ (None, message)
+
+ // our bucketing is un-compatible with hive(different hash
function)
+ case _ if tableDefinition.bucketSpec.nonEmpty =>
+ val message =
+ s"Persisting bucketed data source table $qualifiedTableName
into " +
+ "Hive metastore in Spark SQL specific format, which is NOT
compatible with Hive. "
+ (None, message)
+
+ case (Some(serde), Some(path)) =>
+ val message =
+ s"Persisting data source table $qualifiedTableName with a
single input path " +
+ s"into Hive metastore in Hive compatible format."
+ (Some(newHiveCompatibleMetastoreTable(serde, path)), message)
+
+ case (Some(_), None) =>
+ val message =
+ s"Data source table $qualifiedTableName is not file based.
Persisting it into " +
+ s"Hive metastore in Spark SQL specific format, which is NOT
compatible with Hive."
+ (None, message)
+
+ case _ =>
+ val provider = tableDefinition.provider.get
+ val message =
+ s"Couldn't find corresponding Hive SerDe for data source
provider $provider. " +
+ s"Persisting data source table $qualifiedTableName into Hive
metastore in " +
+ s"Spark SQL specific format, which is NOT compatible with
Hive."
+ (None, message)
+ }
+
+ (hiveCompatibleTable, logMessage) match {
+ case (Some(table), message) =>
+ // We first try to save the metadata of the table in a Hive
compatible way.
+ // If Hive throws an error, we fall back to save its metadata in
the Spark SQL
+ // specific way.
+ try {
+ logInfo(message)
+ saveTableIntoHive(table, ignoreIfExists)
+ } catch {
+ case NonFatal(e) =>
+ val warningMessage =
+ s"Could not persist
${tableDefinition.identifier.quotedString} in a Hive " +
+ "compatible way. Persisting it into Hive metastore in
Spark SQL specific format."
+ logWarning(warningMessage, e)
+ saveTableIntoHive(newSparkSQLSpecificMetastoreTable(),
ignoreIfExists)
+ }
+
+ case (None, message) =>
+ logWarning(message)
+ saveTableIntoHive(newSparkSQLSpecificMetastoreTable(),
ignoreIfExists)
+ }
+ }
+ }
+
+ private def tableMetadataToProperties(table: CatalogTable): Map[String,
String] = {
+ val properties = new scala.collection.mutable.HashMap[String, String]
+ properties.put(DATASOURCE_PROVIDER, table.provider.get)
+
+ // Serialized JSON schema string may be too long to be stored into a
single metastore table
+ // property. In this case, we split the JSON string and store each
part as a separate table
+ // property.
+ val threshold = 4000
--- End diff --
Let's mention the conf at here.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]