Github user yhuai commented on a diff in the pull request:
https://github.com/apache/spark/pull/14155#discussion_r75432300
--- Diff:
sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveExternalCatalog.scala ---
@@ -144,16 +163,172 @@ private[spark] class HiveExternalCatalog(client:
HiveClient, hadoopConf: Configu
assert(tableDefinition.identifier.database.isDefined)
val db = tableDefinition.identifier.database.get
requireDbExists(db)
+ verifyTableProperties(tableDefinition)
+ // We can't create index table currently.
+ assert(tableDefinition.tableType != INDEX)
+ // All tables except view must have a provider.
+ assert(tableDefinition.tableType == VIEW ||
tableDefinition.provider.isDefined)
+
+ // For view or Hive serde tables, they are guaranteed to be Hive
compatible and we save them
+ // to Hive metastore directly. Otherwise, we need to put table
metadata to table properties to
+ // work around some hive metastore problems, e.g. not case-preserving,
bad decimal type support.
+ if (tableDefinition.provider == Some("hive") ||
tableDefinition.tableType == VIEW) {
+ client.createTable(tableDefinition, ignoreIfExists)
+ } else {
+ // Before saving data source table metadata into Hive metastore, we
should:
+ // 1. Put table schema, partition column names and bucket
specification in table properties.
+ // 2. Check if this table is hive compatible
+ // 2.1 If it's not hive compatible, set schema, partition
columns and bucket spec to empty
+ // and save table metadata to Hive.
+ // 2.1 If it's hive compatible, set serde information in table
metadata and try to save
+ // it to Hive. If it fails, treat it as not hive compatible
and go back to 2.1
+
+ val tableProperties = tableMetadataToProperties(tableDefinition)
+
+ // converts the table metadata to Spark SQL specific format, i.e.
set schema, partition column
+ // names and bucket specification to empty.
+ def newSparkSQLSpecificMetastoreTable(): CatalogTable = {
+ tableDefinition.copy(
+ schema = new StructType,
+ partitionColumnNames = Nil,
+ bucketSpec = None,
+ properties = tableDefinition.properties ++ tableProperties)
+ }
+
+ // converts the table metadata to Hive compatible format, i.e. set
the serde information.
+ def newHiveCompatibleMetastoreTable(serde: HiveSerDe, path: String):
CatalogTable = {
+ tableDefinition.copy(
+ storage = tableDefinition.storage.copy(
+ locationUri = Some(new Path(path).toUri.toString),
+ inputFormat = serde.inputFormat,
+ outputFormat = serde.outputFormat,
+ serde = serde.serde
+ ),
+ properties = tableDefinition.properties ++ tableProperties)
+ }
+
+ val qualifiedTableName = tableDefinition.identifier.quotedString
+ val maybeSerde =
HiveSerDe.sourceToSerDe(tableDefinition.provider.get)
+ val maybePath = new
CaseInsensitiveMap(tableDefinition.storage.properties).get("path")
+ val skipHiveMetadata = tableDefinition.storage.properties
+ .getOrElse("skipHiveMetadata", "false").toBoolean
+
+ val (hiveCompatibleTable, logMessage) = (maybeSerde, maybePath)
match {
+ case _ if skipHiveMetadata =>
+ val message =
+ s"Persisting data source table $qualifiedTableName into Hive
metastore in" +
+ "Spark SQL specific format, which is NOT compatible with
Hive."
+ (None, message)
+
+ // our bucketing is un-compatible with hive(different hash
function)
+ case _ if tableDefinition.bucketSpec.nonEmpty =>
+ val message =
+ s"Persisting bucketed data source table $qualifiedTableName
into " +
+ "Hive metastore in Spark SQL specific format, which is NOT
compatible with Hive. "
+ (None, message)
+
+ case (Some(serde), Some(path)) =>
+ val message =
+ s"Persisting data source table $qualifiedTableName with a
single input path " +
+ s"into Hive metastore in Hive compatible format."
+ (Some(newHiveCompatibleMetastoreTable(serde, path)), message)
+
+ case (Some(_), None) =>
+ val message =
+ s"Data source table $qualifiedTableName is not file based.
Persisting it into " +
+ s"Hive metastore in Spark SQL specific format, which is NOT
compatible with Hive."
+ (None, message)
+
+ case _ =>
+ val provider = tableDefinition.provider.get
+ val message =
+ s"Couldn't find corresponding Hive SerDe for data source
provider $provider. " +
+ s"Persisting data source table $qualifiedTableName into Hive
metastore in " +
+ s"Spark SQL specific format, which is NOT compatible with
Hive."
+ (None, message)
+ }
+
+ (hiveCompatibleTable, logMessage) match {
+ case (Some(table), message) =>
+ // We first try to save the metadata of the table in a Hive
compatible way.
+ // If Hive throws an error, we fall back to save its metadata in
the Spark SQL
+ // specific way.
+ try {
+ logInfo(message)
+ saveTableIntoHive(table, ignoreIfExists)
+ } catch {
+ case NonFatal(e) =>
+ val warningMessage =
+ s"Could not persist
${tableDefinition.identifier.quotedString} in a Hive " +
+ "compatible way. Persisting it into Hive metastore in
Spark SQL specific format."
+ logWarning(warningMessage, e)
+ saveTableIntoHive(newSparkSQLSpecificMetastoreTable(),
ignoreIfExists)
+ }
+
+ case (None, message) =>
+ logWarning(message)
+ saveTableIntoHive(newSparkSQLSpecificMetastoreTable(),
ignoreIfExists)
+ }
+ }
+ }
+
+ /**
+ * Converts table schema, partition column names and bucket
specification to a (String, String)
+ * map, which will be put into table properties later.
+ */
+ private def tableMetadataToProperties(table: CatalogTable): Map[String,
String] = {
+ val properties = new scala.collection.mutable.HashMap[String, String]
+ properties.put(DATASOURCE_PROVIDER, table.provider.get)
--- End diff --
Let's still use getOrElse. Although we will reach here if provider is not
hive and the table is not a view, it is still possible that provider is None
(e.g. possibly caused by a bug).
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]