Github user gatorsmile commented on a diff in the pull request:

    https://github.com/apache/spark/pull/15090#discussion_r81455841
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/command/AnalyzeColumnCommand.scala
 ---
    @@ -0,0 +1,175 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.sql.execution.command
    +
    +import scala.collection.mutable
    +
    +import org.apache.spark.sql._
    +import org.apache.spark.sql.catalyst.TableIdentifier
    +import org.apache.spark.sql.catalyst.analysis.EliminateSubqueryAliases
    +import org.apache.spark.sql.catalyst.catalog.{CatalogRelation, 
CatalogTable}
    +import org.apache.spark.sql.catalyst.expressions._
    +import org.apache.spark.sql.catalyst.expressions.aggregate._
    +import org.apache.spark.sql.catalyst.plans.logical.{Aggregate, ColumnStat, 
LogicalPlan, Statistics}
    +import org.apache.spark.sql.execution.datasources.LogicalRelation
    +import org.apache.spark.sql.types._
    +
    +
    +/**
    + * Analyzes the given columns of the given table to generate statistics, 
which will be used in
    + * query optimizations.
    + */
    +case class AnalyzeColumnCommand(
    +    tableIdent: TableIdentifier,
    +    columnNames: Seq[String]) extends RunnableCommand {
    +
    +  override def run(sparkSession: SparkSession): Seq[Row] = {
    +    val sessionState = sparkSession.sessionState
    +    val db = 
tableIdent.database.getOrElse(sessionState.catalog.getCurrentDatabase)
    +    val tableIdentWithDB = TableIdentifier(tableIdent.table, Some(db))
    +    val relation = 
EliminateSubqueryAliases(sessionState.catalog.lookupRelation(tableIdentWithDB))
    +
    +    relation match {
    +      case catalogRel: CatalogRelation =>
    +        updateStats(catalogRel.catalogTable,
    +          AnalyzeTableCommand.calculateTotalSize(sessionState, 
catalogRel.catalogTable))
    +
    +      case logicalRel: LogicalRelation if 
logicalRel.catalogTable.isDefined =>
    +        updateStats(logicalRel.catalogTable.get, 
logicalRel.relation.sizeInBytes)
    +
    +      case otherRelation =>
    +        throw new AnalysisException("ANALYZE TABLE is not supported for " +
    +          s"${otherRelation.nodeName}.")
    +    }
    +
    +    def updateStats(catalogTable: CatalogTable, newTotalSize: Long): Unit 
= {
    +      val (rowCount, columnStats) = computeColStats(sparkSession, relation)
    +      val statistics = Statistics(
    +        sizeInBytes = newTotalSize,
    +        rowCount = Some(rowCount),
    +        colStats = columnStats ++ 
catalogTable.stats.map(_.colStats).getOrElse(Map()))
    +      sessionState.catalog.alterTable(catalogTable.copy(stats = 
Some(statistics)))
    +      // Refresh the cached data source table in the catalog.
    +      sessionState.catalog.refreshTable(tableIdentWithDB)
    +    }
    +
    +    Seq.empty[Row]
    +  }
    +
    +  def computeColStats(
    +      sparkSession: SparkSession,
    +      relation: LogicalPlan): (Long, Map[String, ColumnStat]) = {
    +
    +    // check correctness of column names
    +    val attributesToAnalyze = mutable.MutableList[Attribute]()
    +    val duplicatedColumns = mutable.MutableList[String]()
    +    val resolver = sparkSession.sessionState.conf.resolver
    +    columnNames.foreach { col =>
    +      val exprOption = relation.output.find(attr => resolver(attr.name, 
col))
    +      val expr = exprOption.getOrElse(throw new 
AnalysisException(s"Invalid column name: $col."))
    +      // do deduplication
    +      if (!attributesToAnalyze.contains(expr)) {
    +        attributesToAnalyze += expr
    +      } else {
    +        duplicatedColumns += col
    +      }
    +    }
    +    if (duplicatedColumns.nonEmpty) {
    +      logWarning(s"Duplicated columns ${duplicatedColumns.mkString("(", ", 
", ")")} detected " +
    +        s"when analyzing columns ${columnNames.mkString("(", ", ", ")")}, 
ignoring them.")
    +    }
    +
    +    // Collect statistics per column.
    +    // The first element in the result will be the overall row count, the 
following elements
    +    // will be structs containing all column stats.
    +    // The layout of each struct follows the layout of the ColumnStats.
    +    val ndvMaxErr = sparkSession.sessionState.conf.ndvMaxError
    +    val expressions = Count(Literal(1)).toAggregateExpression() +:
    +      attributesToAnalyze.map(ColumnStatStruct(_, ndvMaxErr))
    +    val namedExpressions = expressions.map(e => Alias(e, e.toString)())
    +    val statsRow = Dataset.ofRows(sparkSession, Aggregate(Nil, 
namedExpressions, relation))
    +      .queryExecution.toRdd.collect().head
    +
    +    // unwrap the result
    +    val rowCount = statsRow.getLong(0)
    +    val columnStats = attributesToAnalyze.zipWithIndex.map { case (expr, 
i) =>
    +      val numFields = ColumnStatStruct.numStatFields(expr.dataType)
    +      (expr.name, ColumnStat(statsRow.getStruct(i + 1, numFields)))
    +    }.toMap
    +    (rowCount, columnStats)
    +  }
    +}
    +
    +object ColumnStatStruct {
    +  val zero = Literal(0, LongType)
    +  val one = Literal(1, LongType)
    +
    +  def numNulls(e: Expression): Expression = if (e.nullable) 
Sum(If(IsNull(e), one, zero)) else zero
    +  def max(e: Expression): Expression = Max(e)
    +  def min(e: Expression): Expression = Min(e)
    +  def ndv(e: Expression, relativeSD: Double): Expression = {
    +    // the approximate ndv should never be larger than the number of rows
    +    Least(Seq(HyperLogLogPlusPlus(e, relativeSD), Count(one)))
    +  }
    +  def avgLength(e: Expression): Expression = Average(Length(e))
    +  def maxLength(e: Expression): Expression = Max(Length(e))
    +  def numTrues(e: Expression): Expression = Sum(If(e, one, zero))
    +  def numFalses(e: Expression): Expression = Sum(If(Not(e), one, zero))
    +
    +  def getStruct(exprs: Seq[Expression]): CreateStruct = {
    --- End diff --
    
    All the above functions should be private, right?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to