Github user wzhfy commented on a diff in the pull request:
https://github.com/apache/spark/pull/15877#discussion_r87928329
--- Diff:
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/CountMinSketchAgg.scala
---
@@ -0,0 +1,131 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.sql.catalyst.expressions.aggregate
+
+import java.io.{ByteArrayInputStream, ByteArrayOutputStream}
+
+import org.apache.spark.sql.catalyst.InternalRow
+import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
+import
org.apache.spark.sql.catalyst.analysis.TypeCheckResult.{TypeCheckFailure,
TypeCheckSuccess}
+import org.apache.spark.sql.catalyst.expressions.{Expression,
ExpressionDescription}
+import org.apache.spark.sql.catalyst.util.GenericArrayData
+import org.apache.spark.sql.types._
+import org.apache.spark.unsafe.types.UTF8String
+import org.apache.spark.util.sketch.CountMinSketch
+
+/**
+ * This function returns a count-min sketch of a column with the given
esp, confidence and seed.
+ * A count-min sketch is a probabilistic data structure used for
summarizing streams of data in
+ * sub-linear space, which is useful for equality predicates and join size
estimation.
+ *
+ * @param child child expression that can produce column value with
`child.eval(inputRow)`
+ * @param epsExpression relative error, must be positive
+ * @param confidenceExpression confidence, must be positive and less than
1.0
+ * @param seedExpression random seed
+ */
+@ExpressionDescription(
+ usage = """
+ _FUNC_(col, eps, confidence, seed) - Returns a count-min sketch of a
column with the given esp,
+ confidence and seed. The result is an array of bytes, which should
be deserialized to a
+ `CountMinSketch` before usage. `CountMinSketch` is useful for
equality predicates and join
+ size estimation.
+ """)
+case class CountMinSketchAgg(
+ child: Expression,
+ epsExpression: Expression,
+ confidenceExpression: Expression,
+ seedExpression: Expression,
+ override val mutableAggBufferOffset: Int,
+ override val inputAggBufferOffset: Int) extends
TypedImperativeAggregate[CountMinSketch] {
+
+ def this(
+ child: Expression,
+ epsExpression: Expression,
+ confidenceExpression: Expression,
+ seedExpression: Expression) = {
+ this(child, epsExpression, confidenceExpression, seedExpression, 0, 0)
+ }
+
+ override def checkInputDataTypes(): TypeCheckResult = {
+ val defaultCheck = super.checkInputDataTypes()
+ if (defaultCheck.isFailure) {
+ defaultCheck
+ } else if (!epsExpression.foldable || !confidenceExpression.foldable ||
+ !seedExpression.foldable) {
+ TypeCheckFailure(
+ "The eps, confidence or seed provided must be a literal or
constant foldable")
+ } else if (epsExpression.eval() == null || confidenceExpression.eval()
== null ||
+ seedExpression.eval() == null) {
+ TypeCheckFailure("The eps, confidence or seed provided should not be
null")
+ } else {
+ // parameter validity will be checked in CountMinSketchImpl
+ TypeCheckSuccess
+ }
+ }
+
+ override def createAggregationBuffer(): CountMinSketch = {
+ val eps: Double = epsExpression.eval().asInstanceOf[Double]
+ val confidence: Double =
confidenceExpression.eval().asInstanceOf[Double]
+ val seed: Int = seedExpression.eval().asInstanceOf[Int]
+ CountMinSketch.create(eps, confidence, seed)
+ }
+
+ override def update(buffer: CountMinSketch, input: InternalRow): Unit = {
+ val value = child.eval(input)
+ // ignore empty rows
+ if (value != null) {
+ // UTF8String is a spark sql type, while CountMinSketch accepts
String type
+ buffer.add(if (value.isInstanceOf[UTF8String]) value.toString else
value)
+ }
+ }
+
+ override def merge(buffer: CountMinSketch, input: CountMinSketch): Unit
= {
+ buffer.mergeInPlace(input)
+ }
+
+ override def eval(buffer: CountMinSketch): Any = new
GenericArrayData(serialize(buffer))
--- End diff --
Yes, that's better, thanks!
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]