Github user windpiger commented on a diff in the pull request:
https://github.com/apache/spark/pull/15994#discussion_r89742322
--- Diff:
sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala ---
@@ -437,4 +444,38 @@ final class DataFrameNaFunctions private[sql](df:
DataFrame) {
case v => throw new IllegalArgumentException(
s"Unsupported value type ${v.getClass.getName} ($v).")
}
+
+ /**
+ * Returns a new [[DataFrame]] that replaces null or NaN values in
specified
+ * numeric, string columns. If a specified column is not a numeric,
string column,
+ * it is ignored.
+ */
+ private def fill1[T](value: T, cols: Seq[String]): DataFrame = {
+ // the fill[T] which T is Long/Integer/Float/Double,
+ // should apply on all the NumericType Column, for example:
+ // val input = Seq[(java.lang.Integer, java.lang.Double)]((null,
164.3)).toDF("a","b")
+ // input.na.fill(3.1)
+ // the result is (3,164.3), not (null, 164.3)
+ val targetType = value match {
+ case _: jl.Double | _: jl.Integer | _: jl.Float | _: jl.Long =>
NumericType
--- End diff --
fixed it
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]