Github user yanboliang commented on a diff in the pull request:
https://github.com/apache/spark/pull/15721#discussion_r93172654
--- Diff:
mllib/src/test/scala/org/apache/spark/ml/util/MLTestingUtils.scala ---
@@ -224,4 +208,139 @@ object MLTestingUtils extends SparkFunSuite {
}.toDF()
(overSampledData, weightedData)
}
+
+ /**
+ * Generates a linear prediction function where the coefficients are
generated randomly.
+ * The function produces a continuous (numClasses = 0) or categorical
(numClasses > 0) label.
+ */
+ def getRandomLinearPredictionFunction(
+ numFeatures: Int,
+ numClasses: Int,
+ seed: Long): (Vector => Double) = {
+ val rng = new scala.util.Random(seed)
+ val trueNumClasses = if (numClasses == 0) 1 else numClasses
+ val coefArray = Array.fill(numFeatures *
trueNumClasses)(rng.nextDouble - 0.5)
+ (features: Vector) => {
+ if (numClasses == 0) {
+ BLAS.dot(features, new DenseVector(coefArray))
+ } else {
+ val margins = new DenseVector(new Array[Double](numClasses))
+ val coefMat = new DenseMatrix(numClasses, numFeatures, coefArray)
+ BLAS.gemv(1.0, coefMat, features, 1.0, margins)
+ margins.argmax.toDouble
+ }
+ }
+ }
+
+ /**
+ * A helper function to generate synthetic data. Generates random
feature values,
+ * both categorical and continuous, according to
`categoricalFeaturesInfo`. The label is generated
+ * from a random prediction function, and noise is added to the true
label.
+ *
+ * @param numPoints The number of data points to generate.
+ * @param numClasses The number of classes the outcome can take on. 0
for continuous labels.
+ * @param numFeatures The number of features in the data.
+ * @param categoricalFeaturesInfo Map of (featureIndex -> numCategories)
for categorical features.
+ * @param seed Random seed.
+ * @param noiseLevel A number in [0.0, 1.0] indicating how much noise to
add to the label.
+ * @return Generated sequence of noisy instances.
+ */
+ def generateNoisyData(
+ numPoints: Int,
+ numClasses: Int,
+ numFeatures: Int,
+ categoricalFeaturesInfo: Map[Int, Int],
+ seed: Long,
+ noiseLevel: Double = 0.3): Seq[Instance] = {
+ require(noiseLevel >= 0.0 && noiseLevel <= 1.0, "noiseLevel must be in
range [0.0, 1.0]")
+ val rng = new scala.util.Random(seed)
+ val predictionFunc = getRandomLinearPredictionFunction(numFeatures,
numClasses, seed)
+ Range(0, numPoints).map { i =>
+ val features = Vectors.dense(Array.tabulate(numFeatures) { j =>
+ val numCategories = categoricalFeaturesInfo.getOrElse(j, 0)
+ if (numCategories > 0) {
+ rng.nextInt(numCategories)
+ } else {
+ rng.nextDouble() - 0.5
+ }
+ })
+ val label = predictionFunc(features)
+ val noisyLabel = if (numClasses > 0) {
+ // with probability equal to noiseLevel, select a random class
instead of the true class
+ if (rng.nextDouble < noiseLevel) rng.nextInt(numClasses) else label
+ } else {
+ // add noise to the label proportional to the noise level
+ label + noiseLevel * rng.nextGaussian()
+ }
+ Instance(noisyLabel, 1.0, features)
+ }
+ }
+
+ /**
+ * Helper function for testing sample weights. Tests that oversampling
each point is equivalent
+ * to assigning a sample weight proportional to the number of samples
for each point.
+ */
+ def testOversamplingVsWeighting[M <: Model[M], E <: Estimator[M]](
+ spark: SparkSession,
+ estimator: E with HasWeightCol with HasLabelCol with
HasFeaturesCol,
+ categoricalFeaturesInfo: Map[Int, Int],
+ numPoints: Int,
+ numClasses: Int,
+ numFeatures: Int,
+ modelEquals: (M, M) => Unit,
+ seed: Long): Unit = {
+ import spark.implicits._
+ val df = generateNoisyData(numPoints, numClasses, numFeatures,
categoricalFeaturesInfo,
+ seed).toDF()
+ val (overSampledData, weightedData) =
genEquivalentOversampledAndWeightedInstances(
+ df, estimator.getLabelCol, estimator.getFeaturesCol, seed)
+ val weightedModel = estimator.set(estimator.weightCol,
"weight").fit(weightedData)
+ val overSampledModel = estimator.set(estimator.weightCol,
"").fit(overSampledData)
+ modelEquals(weightedModel, overSampledModel)
+ }
+
+ /**
+ * Helper function for testing sample weights. Tests that injecting a
large number of outliers
+ * with very small sample weights does not affect fitting. The predictor
should learn the true
+ * model despite the outliers.
+ */
+ def testOutliersWithSmallWeights[M <: Model[M], E <: Estimator[M]](
+ spark: SparkSession,
+ estimator: E with HasWeightCol with HasLabelCol with
HasFeaturesCol,
+ categoricalFeaturesInfo: Map[Int, Int],
+ numPoints: Int,
+ numClasses: Int,
+ numFeatures: Int,
+ modelEquals: (M, M) => Unit,
+ seed: Long): Unit = {
+ import spark.implicits._
+ val df = generateNoisyData(numPoints, numClasses, numFeatures,
categoricalFeaturesInfo,
+ seed).toDF()
+ val outlierFunction = getRandomLinearPredictionFunction(numFeatures,
numClasses, seed - 1)
--- End diff --
I'm more prefer to implement ```outlierFunction``` as a simple function
such as:
* ```class -> numClass - class - 1``` for classification.
* ```label -> -label``` for regression.
which should be more intuitional and easy to be understand by
developers/contributors.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]