Github user actuaryzhang commented on a diff in the pull request:
https://github.com/apache/spark/pull/16699#discussion_r99406022
--- Diff:
mllib/src/test/scala/org/apache/spark/ml/regression/GeneralizedLinearRegressionSuite.scala
---
@@ -743,6 +743,84 @@ class GeneralizedLinearRegressionSuite
}
}
+ test("generalized linear regression with offset") {
+ /*
+ R code:
+ library(statmod)
+ df <- as.data.frame(matrix(c(
+ 1.0, 1.0, 2.0, 0.0, 5.0,
+ 2.0, 2.0, 0.5, 1.0, 2.0,
+ 1.0, 3.0, 1.0, 2.0, 1.0,
+ 2.0, 4.0, 0.0, 3.0, 3.0), 4, 5, byrow = TRUE))
+ families <- list(gaussian, poisson, Gamma, tweedie(1.5))
+ f1 <- V1 ~ -1 + V4 + V5
+ f2 <- V1 ~ V4 + V5
+ for (f in c(f1, f2)) {
+ for (fam in families) {
+ model <- glm(f, df, family = fam, weights = V2, offset = V3)
+ print(as.vector(coef(model)))
+ }
+ }
+
+ [1] 0.535040431 0.005390836
+ [1] 0.1968355 -0.2061711
+ [1] 0.307996 -0.153579
+ [1] 0.32166185 -0.09698986
+ [1] -0.8800000 0.7342857 0.1714286
+ [1] -1.9991044 0.7247511 0.1424392
+ [1] -0.27378146 0.31599396 -0.06204946
+ [1] -0.17118812 0.31200361 -0.02541656
+ */
+ val dataset = Seq(
+ OffsetInstance(1.0, 1.0, 2.0, Vectors.dense(0.0, 5.0)),
+ OffsetInstance(2.0, 2.0, 0.5, Vectors.dense(1.0, 2.0)),
+ OffsetInstance(1.0, 3.0, 1.0, Vectors.dense(2.0, 1.0)),
+ OffsetInstance(2.0, 4.0, 0.0, Vectors.dense(3.0, 3.0))
+ ).toDF()
+
+ val expected = Seq(
+ Vectors.dense(0.0, 0.535040431, 0.005390836),
+ Vectors.dense(0.0, 0.1968355, -0.2061711),
+ Vectors.dense(0.0, 0.307996, -0.153579),
+ Vectors.dense(0.0, 0.32166185, -0.09698986),
+ Vectors.dense(-0.88, 0.7342857, 0.1714286),
+ Vectors.dense(-1.9991044, 0.7247511, 0.1424392),
+ Vectors.dense(-0.27378146, 0.31599396, -0.06204946),
+ Vectors.dense(-0.17118812, 0.31200361, -0.02541656))
+
+ import GeneralizedLinearRegression._
+
+ var idx = 0
+ for (fitIntercept <- Seq(false, true)) {
+ for (family <- Seq("gaussian", "poisson", "gamma", "tweedie")) {
+ var trainer = new GeneralizedLinearRegression().setFamily(family)
+ .setFitIntercept(fitIntercept).setOffsetCol("offset")
+ .setWeightCol("weight").setLinkPredictionCol("linkPrediction")
+ if (family == "tweedie") trainer = trainer.setVariancePower(1.5)
+ val model = trainer.fit(dataset)
+ val actual = Vectors.dense(model.intercept, model.coefficients(0),
model.coefficients(1))
+ assert(actual ~= expected(idx) absTol 1e-4, s"Model mismatch: GLM
with family = $family," +
--- End diff --
Thanks for pointing out this. Yes, I also encountered the issue with
intercept only + offset model. Will look into this and fix.
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]