Github user maropu commented on a diff in the pull request:

    https://github.com/apache/spark/pull/17142#discussion_r104105767
  
    --- Diff: 
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/csv/UnivocityParser.scala
 ---
    @@ -54,39 +54,77 @@ private[csv] class UnivocityParser(
     
       private val dataSchema = StructType(schema.filter(_.name != 
options.columnNameOfCorruptRecord))
     
    -  private val valueConverters =
    -    dataSchema.map(f => makeConverter(f.name, f.dataType, f.nullable, 
options)).toArray
    -
       private val tokenizer = new CsvParser(options.asParserSettings)
     
       private var numMalformedRecords = 0
     
       private val row = new GenericInternalRow(requiredSchema.length)
     
    -  // This gets the raw input that is parsed lately.
    +  // In `PERMISSIVE` parse mode, we should be able to put the raw 
malformed row into the field
    +  // specified in `columnNameOfCorruptRecord`. The raw input is retrieved 
by this method.
       private def getCurrentInput(): String = 
tokenizer.getContext.currentParsedContent().stripLineEnd
     
    -  // This parser loads an `indexArr._1`-th position value in input tokens,
    -  // then put the value in `row(indexArr._2)`.
    -  private val indexArr: Array[(Int, Int)] = {
    -    val fields = if (options.dropMalformed) {
    -      // If `dropMalformed` is enabled, then it needs to parse all the 
values
    -      // so that we can decide which row is malformed.
    -      requiredSchema ++ schema.filterNot(requiredSchema.contains(_))
    -    } else {
    -      requiredSchema
    -    }
    -    // TODO: Revisit this; we need to clean up code here for readability.
    -    // See an URL below for related discussions:
    -    // https://github.com/apache/spark/pull/16928#discussion_r102636720
    -    val fieldsWithIndexes = fields.zipWithIndex
    -    corruptFieldIndex.map { case corrFieldIndex =>
    -      fieldsWithIndexes.filter { case (_, i) => i != corrFieldIndex }
    -    }.getOrElse {
    -      fieldsWithIndexes
    -    }.map { case (f, i) =>
    -      (dataSchema.indexOf(f), i)
    -    }.toArray
    +  // This parser loads an `tokenIndexArr`-th position value in input 
tokens,
    +  // then put the value in `row(rowIndexArr)`.
    +  //
    +  // For example, let's say there is CSV data as below:
    +  //
    +  //   a,b,c
    +  //   1,2,A
    +  //
    +  // Also, let's say `columnNameOfCorruptRecord` is set to "_unparsed", 
`header` is `true`
    +  // by user and the user selects "c", "b", "_unparsed" and "a" fields. In 
this case, we need
    +  // to map those values below:
    +  //
    +  //   required schema - ["c", "b", "_unparsed", "a"]
    +  //   CSV data schema - ["a", "b", "c"]
    +  //   required CSV data schema - ["c", "b", "a"]
    --- End diff --
    
    I feel "required CSV data schema" is a little ambiguous because there is no 
schema variable along this name in this class. So, it seems we need to describe 
more? 


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to