Github user jkbradley commented on a diff in the pull request:

    https://github.com/apache/spark/pull/2451#discussion_r17806894
  
    --- Diff: mllib/src/main/scala/org/apache/spark/mllib/linalg/Matrices.scala 
---
    @@ -93,9 +1000,310 @@ object Matrices {
             require(dm.majorStride == dm.rows,
               "Do not support stride size different from the number of rows.")
             new DenseMatrix(dm.rows, dm.cols, dm.data)
    +      case sm: BSM[Double] =>
    +        new SparseMatrix(sm.rows, sm.cols, sm.colPtrs, sm.rowIndices, 
sm.data)
           case _ =>
             throw new UnsupportedOperationException(
               s"Do not support conversion from type 
${breeze.getClass.getName}.")
         }
       }
    +
    +  /**
    +   * Generate a `DenseMatrix` consisting of zeros.
    +   * @param numRows number of rows of the matrix
    +   * @param numCols number of columns of the matrix
    +   * @return `Matrix` with size `numRows` x `numCols` and values of zeros
    +   */
    +  def zeros(numRows: Int, numCols: Int): Matrix = 
DenseMatrix.zeros(numRows, numCols)
    +
    +  /**
    +   * Generate a `DenseMatrix` consisting of ones.
    +   * @param numRows number of rows of the matrix
    +   * @param numCols number of columns of the matrix
    +   * @return `Matrix` with size `numRows` x `numCols` and values of ones
    +   */
    +  def ones(numRows: Int, numCols: Int): Matrix = DenseMatrix.ones(numRows, 
numCols)
    +
    +  /**
    +   * Generate an Identity Matrix in `DenseMatrix` format.
    +   * @param n number of rows and columns of the matrix
    +   * @return `Matrix` with size `n` x `n` and values of ones on the 
diagonal
    +   */
    +  def eye(n: Int): Matrix = DenseMatrix.eye(n)
    +
    +  /**
    +   * Generate an Identity Matrix in `SparseMatrix` format.
    +   * @param n number of rows and columns of the matrix
    +   * @return `Matrix` with size `n` x `n` and values of ones on the 
diagonal
    +   */
    +  def speye(n: Int): Matrix = SparseMatrix.speye(n)
    +
    +  /**
    +   * Generate a `DenseMatrix` consisting of i.i.d. uniform random numbers.
    +   * @param numRows number of rows of the matrix
    +   * @param numCols number of columns of the matrix
    +   * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
    +   */
    +  def rand(numRows: Int, numCols: Int): Matrix = DenseMatrix.rand(numRows, 
numCols)
    +
    +  /**
    +   * Generate a `DenseMatrix` consisting of i.i.d. gaussian random numbers.
    +   * @param numRows number of rows of the matrix
    +   * @param numCols number of columns of the matrix
    +   * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
    +   */
    +  def randn(numRows: Int, numCols: Int): Matrix = 
DenseMatrix.randn(numRows, numCols)
    +
    +  /**
    +   * Generate a `SparseMatrix` consisting of i.i.d. gaussian random 
numbers.
    +   * @param numRows number of rows of the matrix
    +   * @param numCols number of columns of the matrix
    +   * @param density the desired density for the matrix
    +   * @param seed the seed for the random generator
    +   * @return `Matrix` with size `numRows` x `numCols` and values in U(0, 1)
    +   */
    +  def sprand(
    +      numRows: Int,
    +      numCols: Int,
    +      density: Double,
    +      seed: Long = Utils.random.nextLong()): Matrix =
    +    SparseMatrix.sprand(numRows, numCols, density, seed)
    +
    +  /**
    +   * Generate a `SparseMatrix` consisting of i.i.d. gaussian random 
numbers.
    +   * @param numRows number of rows of the matrix
    +   * @param numCols number of columns of the matrix
    +   * @param density the desired density for the matrix
    +   * @param seed the seed for the random generator
    +   * @return `Matrix` with size `numRows` x `numCols` and values in N(0, 1)
    +   */
    +  def sprandn(
    +      numRows: Int,
    +      numCols: Int,
    +      density: Double,
    +      seed: Long = Utils.random.nextLong()): Matrix =
    +    SparseMatrix.sprandn(numRows, numCols, density, seed)
    +
    +  /**
    +   * Generate a diagonal matrix in `DenseMatrix` format from the supplied 
values. Use
    +   * [[org.apache.spark.mllib.linalg.SparseMatrix.diag()]] in order to 
generate the matrix in
    +   * `SparseMatrix` format.
    +   * @param vector a `Vector` that will form the values on the diagonal of 
the matrix
    +   * @return Square `Matrix` with size `values.length` x `values.length` 
and `values`
    +   *         on the diagonal
    +   */
    +  def diag(vector: Vector): Matrix = DenseMatrix.diag(vector)
    +
    +  /**
    +   * Horizontally concatenate a sequence of matrices. The returned matrix 
will be in the format
    +   * the matrices are supplied in. Supplying a mix of dense and sparse 
matrices is not supported.
    +   * @param matrices sequence of matrices
    +   * @return a single `Matrix` composed of the matrices that were 
horizontally concatenated
    +   */
    +  private[mllib] def horzCat(matrices: Seq[Matrix]): Matrix = {
    +    if (matrices.size == 1) {
    +      return matrices(0)
    +    }
    +    val numRows = matrices(0).numRows
    +    var rowsMatch = true
    +    var isDense = false
    +    var isSparse = false
    +    for (mat <- matrices) {
    +      if (numRows != mat.numRows) rowsMatch = false
    +      mat match {
    +        case sparse: SparseMatrix => isSparse = true
    +        case dense: DenseMatrix => isDense = true
    +      }
    +    }
    +    require(rowsMatch, "The number of rows of the matrices in this array, 
don't match!")
    +    var numCols = 0
    +    matrices.foreach(numCols += _.numCols)
    +    if (isSparse && !isDense) {
    +      val allColPtrs: Array[Int] = Array(0) ++ matrices.flatMap { mat =>
    +        val ptr = mat.asInstanceOf[SparseMatrix].colPtrs
    +        ptr.slice(1, ptr.length)
    +      }
    +      var counter = 0
    +      val adjustedPtrs = allColPtrs.map { p =>
    +        counter += p
    +        counter
    +      }
    +      new SparseMatrix(numRows, numCols, adjustedPtrs,
    +        matrices.flatMap(_.asInstanceOf[SparseMatrix].rowIndices).toArray,
    +        matrices.flatMap(_.asInstanceOf[SparseMatrix].values).toArray)
    +    } else if (!isSparse && !isDense) {
    +      throw new IllegalArgumentException("The supplied matrices are 
neither in SparseMatrix or" +
    +        " DenseMatrix format!")
    +    }else {
    +      new DenseMatrix(numRows, numCols, 
matrices.flatMap(_.toArray).toArray)
    +    }
    +  }
    +  // partitionMetaData correspond to the index of the partition and the 
max number of non-zeros
    +  // in that partition so that we can preallocate a memory efficient buffer
    +  private[mllib] def fromRDD(
    +      rows: RDD[(Double, Vector)],
    +      partitionMetaData: Array[(Int, Int)],
    +      batchSize : Int,
    +      buildSparseThreshold: Double,
    +      generateOnTheFly: Boolean = true): RDD[(DenseMatrix, Matrix)] = {
    +
    +    if (!generateOnTheFly){
    +      rows.mapPartitions { iter =>
    +        iter.grouped(batchSize)
    +      }.map(fromSeq(_, batchSize))
    +    }else {
    +      val numFeatures = rows.first()._2.size
    +
    +      rows.mapPartitionsWithIndex{ case (ind, iter) =>
    +        val findPartition = partitionMetaData.find(_._1 == ind)
    +        val matrixBuffer =
    +          if (findPartition.get._2 != -1) {
    +            val nnz = findPartition.get._2
    +            val density = nnz * 1.0 / (numFeatures * batchSize)
    +            if (density <= buildSparseThreshold) {
    +              (DenseMatrix.zeros(batchSize, 1), new 
SparseMatrix(numFeatures, batchSize,
    +                Array.fill(batchSize + 1)(0), Array.fill(nnz)(0), 
Array.fill(nnz)(0.0)))
    +            } else {
    +              (DenseMatrix.zeros(batchSize, 1), 
DenseMatrix.zeros(numFeatures, batchSize))
    +            }
    +          } else {
    +            (DenseMatrix.zeros(batchSize, 1), 
DenseMatrix.zeros(numFeatures, batchSize))
    +          }
    +        iter.grouped(batchSize).map(fromSeqIntoBuffer(_, matrixBuffer, 
batchSize)._2)
    +      }
    +    }
    +  }
    +
    +  // Collects data on the maximum number of non-zero elements in a 
partition for each
    +  // batch of matrices
    +  private[mllib] def getSparsityData(
    --- End diff --
    
    Should this and other methods which operate on labeled data be in a 
separate object from Matrices?  E.g., LabeledMatrices?


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at infrastruct...@apache.org or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to