Github user daniloascione commented on a diff in the pull request:

    https://github.com/apache/spark/pull/16618#discussion_r113702013
  
    --- Diff: 
mllib/src/main/scala/org/apache/spark/ml/evaluation/RankingEvaluator.scala ---
    @@ -0,0 +1,138 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +package org.apache.spark.ml.evaluation
    +
    +import org.apache.spark.annotation.{Experimental, Since}
    +import org.apache.spark.ml.param.{IntParam, Param, ParamMap, 
ParamValidators}
    +import org.apache.spark.ml.param.shared.{HasLabelCol, HasPredictionCol}
    +import org.apache.spark.ml.util.{DefaultParamsReadable, 
DefaultParamsWritable, Identifiable, SchemaUtils}
    +import org.apache.spark.sql.{DataFrame, Dataset}
    +import org.apache.spark.sql.expressions.Window
    +import org.apache.spark.sql.functions.{coalesce, col, collect_list, 
row_number, udf}
    +import org.apache.spark.sql.types.LongType
    +
    +/**
    + * Evaluator for ranking.
    + */
    +@Since("2.2.0")
    +@Experimental
    +final class RankingEvaluator @Since("2.2.0")(@Since("2.2.0") override val 
uid: String)
    +  extends Evaluator with HasPredictionCol with HasLabelCol with 
DefaultParamsWritable {
    +
    +  @Since("2.2.0")
    +  def this() = this(Identifiable.randomUID("rankingEval"))
    +
    +  @Since("2.2.0")
    +  val k = new IntParam(this, "k", "Top-K cutoff", (x: Int) => x > 0)
    +
    +  /** @group getParam */
    +  @Since("2.2.0")
    +  def getK: Int = $(k)
    +
    +  /** @group setParam */
    +  @Since("2.2.0")
    +  def setK(value: Int): this.type = set(k, value)
    +
    +  setDefault(k -> 1)
    +
    +  @Since("2.2.0")
    +  val metricName: Param[String] = {
    +    val allowedParams = ParamValidators.inArray(Array("mpr"))
    +    new Param(this, "metricName", "metric name in evaluation (mpr)", 
allowedParams)
    +  }
    +
    +  /** @group getParam */
    +  @Since("2.2.0")
    +  def getMetricName: String = $(metricName)
    +
    +  /** @group setParam */
    +  @Since("2.2.0")
    +  def setMetricName(value: String): this.type = set(metricName, value)
    +
    +  /** @group setParam */
    +  @Since("2.2.0")
    +  def setPredictionCol(value: String): this.type = set(predictionCol, 
value)
    +
    +  /** @group setParam */
    +  @Since("2.2.0")
    +  def setLabelCol(value: String): this.type = set(labelCol, value)
    +
    +  /**
    +   * Param for query column name.
    +   * @group param
    +   */
    +  val queryCol: Param[String] = new Param[String](this, "queryCol", "query 
column name")
    +
    +  setDefault(queryCol, "query")
    +
    +  /** @group getParam */
    +  @Since("2.2.0")
    +  def getQueryCol: String = $(queryCol)
    +
    +  /** @group setParam */
    +  @Since("2.2.0")
    +  def setQueryCol(value: String): this.type = set(queryCol, value)
    +
    +  setDefault(metricName -> "mpr")
    +
    +  @Since("2.2.0")
    +  override def evaluate(dataset: Dataset[_]): Double = {
    +    val schema = dataset.schema
    +    SchemaUtils.checkNumericType(schema, $(predictionCol))
    +    SchemaUtils.checkNumericType(schema, $(labelCol))
    +    SchemaUtils.checkNumericType(schema, $(queryCol))
    +
    +    val w = 
Window.partitionBy(col($(queryCol))).orderBy(col($(predictionCol)).desc)
    +
    +    val topAtk: DataFrame = dataset
    +      .na.drop("all", Seq($(predictionCol)))
    +      .select(col($(predictionCol)), col($(labelCol)).cast(LongType), 
col($(queryCol)))
    +      .withColumn("rn", row_number().over(w)).where(col("rn") <= $(k))
    +      .drop("rn")
    +      .groupBy(col($(queryCol)))
    +      .agg(collect_list($(labelCol)).as("topAtk"))
    +
    +    val mapToEmptyArray_ = udf(() => Array.empty[Long])
    +
    +    val predictionAndLabels: DataFrame = dataset
    +      .join(topAtk, Seq($(queryCol)), "outer")
    +      .withColumn("topAtk", coalesce(col("topAtk"), mapToEmptyArray_()))
    +      .select($(labelCol), "topAtk")
    --- End diff --
    
    Yes, I agree. This is currently done in the previous step, when the topAtk 
Dataframe is calculated ([line 
101](https://github.com/apache/spark/pull/16618/files/fa2155af8947347a2fc1e565cf05a19529022266#diff-0345c4cb1878d3bb0d84297202fdc95fR101)).
    
    Unfortunately this is not compatible with RankingMetrics, which expects the 
format of predictionAndLabels as input. I didn't want to change RankingMetrics 
in this same PR. 
    So the predictionAndLabels DataFrame is calculated to use the same 
RankingMetrics from mllib (well, it is now UDFs based, but I didn't touched its 
logic).


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to