Github user viirya commented on the issue:
https://github.com/apache/spark/pull/18687
There is another case we should fix. You can see the storage level of ds2
is StorageLevel.NONE, but its executed plan is still cached version.
scala> Seq("1", "2").toDF().write.saveAsTable("t")
scala> val ds1 = spark.table("t")
ds1: org.apache.spark.sql.DataFrame = [value: string]
scala> val ds2 = spark.table("t")
ds2: org.apache.spark.sql.DataFrame = [value: string]
scala> ds1.persist()
res1: ds1.type = [value: string]
scala> ds2.queryExecution.executedPlan
res2: org.apache.spark.sql.execution.SparkPlan =
InMemoryTableScan [value#11]
+- InMemoryRelation [value#11], true, 10000, StorageLevel(disk,
memory, deserialized, 1 replicas)
+- *FileScan parquet default.t[value#7] Batched: true, Format:
Parquet, Location:
InMemoryFileIndex[file:/root/repos/spark-1/spark-warehouse/t],
PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string>
scala> ds1.unpersist()
res3: ds1.type = [value: string]
scala> ds2.queryExecution.executedPlan
res4: org.apache.spark.sql.execution.SparkPlan =
InMemoryTableScan [value#11]
+- InMemoryRelation [value#11], true, 10000, StorageLevel(disk,
memory, deserialized, 1 replicas)
+- *FileScan parquet default.t[value#7] Batched: true, Format:
Parquet, Location:
InMemoryFileIndex[file:/root/repos/spark-1/spark-warehouse/t],
PartitionFilters: [], PushedFilters: [], ReadSchema: struct<value:string>
scala> ds2.storageLevel
res5: org.apache.spark.storage.StorageLevel = StorageLevel(1 replicas)
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]