Github user BryanCutler commented on a diff in the pull request:

    https://github.com/apache/spark/pull/18664#discussion_r146347107
  
    --- Diff: python/pyspark/sql/types.py ---
    @@ -1619,11 +1619,39 @@ def to_arrow_type(dt):
             arrow_type = pa.decimal(dt.precision, dt.scale)
         elif type(dt) == StringType:
             arrow_type = pa.string()
    +    elif type(dt) == DateType:
    +        arrow_type = pa.date32()
    +    elif type(dt) == TimestampType:
    +        # Timestamps should be in UTC, JVM Arrow timestamps require a 
timezone to be read
    +        arrow_type = pa.timestamp('us', tz='UTC')
         else:
             raise TypeError("Unsupported type in conversion to Arrow: " + 
str(dt))
         return arrow_type
     
     
    +def _check_dataframe_localize_timestamps(df):
    +    """ Convert timezone aware timestamps to timezone-naive in local time
    +    """
    +    from pandas.api.types import is_datetime64tz_dtype
    +    for column, series in df.iteritems():
    +        # TODO: handle nested timestamps?
    +        if is_datetime64tz_dtype(series.dtype):
    +            df[column] = 
series.dt.tz_convert('tzlocal()').dt.tz_localize(None)
    +    return df
    +
    +
    +def _check_series_convert_timestamps_internal(s):
    +    """ Convert a tz-naive timestamp in local tz to UTC normalized for 
Spark internal storage
    +    """
    +    from pandas.api.types import is_datetime64_dtype
    +    # TODO: handle nested timestamps?
    --- End diff --
    
    @gatorsmile there is a negative test for unsupported types. It ends up the 
same for any unsupported type (the type is checked in if-elif-else block) so 
ArrayType is not explicitly tested but would end in the same default case and 
raise an error. Is that ok with you?


---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to