Github user mccheah commented on a diff in the pull request:
https://github.com/apache/spark/pull/19468#discussion_r147006050
--- Diff:
resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/KubernetesClusterSchedulerBackend.scala
---
@@ -0,0 +1,440 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.scheduler.cluster.k8s
+
+import java.io.Closeable
+import java.net.InetAddress
+import java.util.concurrent.{ConcurrentHashMap, ExecutorService,
ScheduledExecutorService, TimeUnit}
+import java.util.concurrent.atomic.{AtomicInteger, AtomicLong,
AtomicReference}
+
+import scala.collection.JavaConverters._
+import scala.collection.mutable
+import scala.concurrent.{ExecutionContext, Future}
+
+import io.fabric8.kubernetes.api.model._
+import io.fabric8.kubernetes.client.{KubernetesClient,
KubernetesClientException, Watcher}
+import io.fabric8.kubernetes.client.Watcher.Action
+
+import org.apache.spark.SparkException
+import org.apache.spark.deploy.k8s.config._
+import org.apache.spark.deploy.k8s.constants._
+import org.apache.spark.rpc.{RpcAddress, RpcEndpointAddress, RpcEnv}
+import org.apache.spark.scheduler.{ExecutorExited, SlaveLost,
TaskSchedulerImpl}
+import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend
+import org.apache.spark.util.Utils
+
+private[spark] class KubernetesClusterSchedulerBackend(
+ scheduler: TaskSchedulerImpl,
+ rpcEnv: RpcEnv,
+ executorPodFactory: ExecutorPodFactory,
+ kubernetesClient: KubernetesClient,
+ allocatorExecutor: ScheduledExecutorService,
+ requestExecutorsService: ExecutorService)
+ extends CoarseGrainedSchedulerBackend(scheduler, rpcEnv) {
+
+ import KubernetesClusterSchedulerBackend._
+
+ private val EXECUTOR_ID_COUNTER = new AtomicLong(0L)
+ private val RUNNING_EXECUTOR_PODS_LOCK = new Object
+ // Indexed by executor IDs and guarded by RUNNING_EXECUTOR_PODS_LOCK.
+ private val runningExecutorsToPods = new mutable.HashMap[String, Pod]
+ // Indexed by executor pod names and guarded by
RUNNING_EXECUTOR_PODS_LOCK.
+ private val runningPodsToExecutors = new mutable.HashMap[String, String]
+ private val executorPodsByIPs = new ConcurrentHashMap[String, Pod]()
+ private val podsWithKnownExitReasons = new ConcurrentHashMap[String,
ExecutorExited]()
+ private val disconnectedPodsByExecutorIdPendingRemoval = new
ConcurrentHashMap[String, Pod]()
+
+ private val kubernetesNamespace = conf.get(KUBERNETES_NAMESPACE)
+
+ private val kubernetesDriverPodName = conf
+ .get(KUBERNETES_DRIVER_POD_NAME)
+ .getOrElse(throw new SparkException("Must specify the driver pod
name"))
+ private implicit val requestExecutorContext =
ExecutionContext.fromExecutorService(
+ requestExecutorsService)
+
+ private val driverPod = try {
+ kubernetesClient.pods()
+ .inNamespace(kubernetesNamespace)
+ .withName(kubernetesDriverPodName)
+ .get()
+ } catch {
+ case throwable: Throwable =>
+ logError(s"Executor cannot find driver pod.", throwable)
+ throw new SparkException(s"Executor cannot find driver pod",
throwable)
+ }
+
+ override val minRegisteredRatio =
+ if
(conf.getOption("spark.scheduler.minRegisteredResourcesRatio").isEmpty) {
+ 0.8
+ } else {
+ super.minRegisteredRatio
+ }
+
+ private val executorWatchResource = new AtomicReference[Closeable]
+ protected val totalExpectedExecutors = new AtomicInteger(0)
+
+ private val driverUrl = RpcEndpointAddress(
+ conf.get("spark.driver.host"),
+ conf.getInt("spark.driver.port", DEFAULT_DRIVER_PORT),
+ CoarseGrainedSchedulerBackend.ENDPOINT_NAME).toString
+
+ private val initialExecutors = getInitialTargetExecutorNumber()
+
+ private val podAllocationInterval =
conf.get(KUBERNETES_ALLOCATION_BATCH_DELAY)
+ require(podAllocationInterval > 0, s"Allocation batch delay " +
+ s"${KUBERNETES_ALLOCATION_BATCH_DELAY} " +
+ s"is ${podAllocationInterval}, should be a positive integer")
+
+ private val podAllocationSize =
conf.get(KUBERNETES_ALLOCATION_BATCH_SIZE)
+ require(podAllocationSize > 0, s"Allocation batch size " +
+ s"${KUBERNETES_ALLOCATION_BATCH_SIZE} " +
+ s"is ${podAllocationSize}, should be a positive integer")
+
+ private val allocatorRunnable = new Runnable {
+
+ // Maintains a map of executor id to count of checks performed to
learn the loss reason
+ // for an executor.
+ private val executorReasonCheckAttemptCounts = new
mutable.HashMap[String, Int]
+
+ override def run(): Unit = {
+ handleDisconnectedExecutors()
+ RUNNING_EXECUTOR_PODS_LOCK.synchronized {
+ if (totalRegisteredExecutors.get() < runningExecutorsToPods.size) {
+ logDebug("Waiting for pending executors before scaling")
+ } else if (totalExpectedExecutors.get() <=
runningExecutorsToPods.size) {
+ logDebug("Maximum allowed executor limit reached. Not scaling up
further.")
+ } else {
+ val nodeToLocalTaskCount = getNodesWithLocalTaskCounts
+ for (i <- 0 until math.min(
+ totalExpectedExecutors.get - runningExecutorsToPods.size,
podAllocationSize)) {
+ val (executorId, pod) =
allocateNewExecutorPod(nodeToLocalTaskCount)
+ runningExecutorsToPods.put(executorId, pod)
+ runningPodsToExecutors.put(pod.getMetadata.getName, executorId)
+ logInfo(
+ s"Requesting a new executor, total executors is now
${runningExecutorsToPods.size}")
+ }
+ }
+ }
+ }
+
+ def handleDisconnectedExecutors(): Unit = {
+ // For each disconnected executor, synchronize with the loss reasons
that may have been found
+ // by the executor pod watcher. If the loss reason was discovered by
the watcher,
+ // inform the parent class with removeExecutor.
+ disconnectedPodsByExecutorIdPendingRemoval.keys().asScala.foreach {
case (executorId) =>
+ val executorPod =
disconnectedPodsByExecutorIdPendingRemoval.get(executorId)
+ val knownExitReason = Option(podsWithKnownExitReasons.remove(
+ executorPod.getMetadata.getName))
+ knownExitReason.fold {
+ removeExecutorOrIncrementLossReasonCheckCount(executorId)
+ } { executorExited =>
+ logDebug(s"Removing executor $executorId with loss reason " +
executorExited.message)
+ removeExecutor(executorId, executorExited)
+ // We keep around executors that have exit conditions caused by
the application. This
+ // allows them to be debugged later on. Otherwise, mark them as
to be deleted from the
+ // the API server.
+ if (!executorExited.exitCausedByApp) {
+ deleteExecutorFromClusterAndDataStructures(executorId)
+ }
+ }
+ }
+ }
+
+ def removeExecutorOrIncrementLossReasonCheckCount(executorId: String):
Unit = {
+ val reasonCheckCount =
executorReasonCheckAttemptCounts.getOrElse(executorId, 0)
+ if (reasonCheckCount >= MAX_EXECUTOR_LOST_REASON_CHECKS) {
+ removeExecutor(executorId, SlaveLost("Executor lost for unknown
reasons."))
+ deleteExecutorFromClusterAndDataStructures(executorId)
+ } else {
+ executorReasonCheckAttemptCounts.put(executorId, reasonCheckCount
+ 1)
+ }
+ }
+
+ def deleteExecutorFromClusterAndDataStructures(executorId: String):
Unit = {
+ disconnectedPodsByExecutorIdPendingRemoval.remove(executorId)
+ executorReasonCheckAttemptCounts -= executorId
+ RUNNING_EXECUTOR_PODS_LOCK.synchronized {
+ runningExecutorsToPods.remove(executorId).map { pod =>
+ kubernetesClient.pods().delete(pod)
--- End diff --
All Kubernetes API calls are asynchronous. We can technically stall if
there's an HTTP connection error though.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]