Github user mridulm commented on a diff in the pull request:
https://github.com/apache/spark/pull/19468#discussion_r147025026
--- Diff:
resource-managers/kubernetes/core/src/main/scala/org/apache/spark/scheduler/cluster/k8s/ExecutorPodFactory.scala
---
@@ -0,0 +1,229 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.spark.scheduler.cluster.k8s
+
+import scala.collection.JavaConverters._
+
+import io.fabric8.kubernetes.api.model._
+
+import org.apache.spark.{SparkConf, SparkException}
+import org.apache.spark.deploy.k8s.ConfigurationUtils
+import org.apache.spark.deploy.k8s.config._
+import org.apache.spark.deploy.k8s.constants._
+import org.apache.spark.util.Utils
+
+/**
+ * Configures executor pods. Construct one of these with a SparkConf to
set up properties that are
+ * common across all executors. Then, pass in dynamic parameters into
createExecutorPod.
+ */
+private[spark] trait ExecutorPodFactory {
+ def createExecutorPod(
+ executorId: String,
+ applicationId: String,
+ driverUrl: String,
+ executorEnvs: Seq[(String, String)],
+ driverPod: Pod,
+ nodeToLocalTaskCount: Map[String, Int]): Pod
+}
+
+private[spark] class ExecutorPodFactoryImpl(sparkConf: SparkConf)
+ extends ExecutorPodFactory {
+
+ import ExecutorPodFactoryImpl._
+
+ private val executorExtraClasspath = sparkConf.get(
+ org.apache.spark.internal.config.EXECUTOR_CLASS_PATH)
+ private val executorJarsDownloadDir =
sparkConf.get(INIT_CONTAINER_JARS_DOWNLOAD_LOCATION)
+
+ private val executorLabels =
ConfigurationUtils.parsePrefixedKeyValuePairs(
+ sparkConf,
+ KUBERNETES_EXECUTOR_LABEL_PREFIX,
+ "executor label")
+ require(
+ !executorLabels.contains(SPARK_APP_ID_LABEL),
+ s"Custom executor labels cannot contain $SPARK_APP_ID_LABEL as it is
reserved for Spark.")
+ require(
+ !executorLabels.contains(SPARK_EXECUTOR_ID_LABEL),
+ s"Custom executor labels cannot contain $SPARK_EXECUTOR_ID_LABEL as it
is reserved for" +
+ s" Spark.")
+
+ private val executorAnnotations =
+ ConfigurationUtils.parsePrefixedKeyValuePairs(
+ sparkConf,
+ KUBERNETES_EXECUTOR_ANNOTATION_PREFIX,
+ "executor annotation")
+ private val nodeSelector =
+ ConfigurationUtils.parsePrefixedKeyValuePairs(
+ sparkConf,
+ KUBERNETES_NODE_SELECTOR_PREFIX,
+ "node selector")
+
+ private val executorDockerImage = sparkConf.get(EXECUTOR_DOCKER_IMAGE)
+ private val dockerImagePullPolicy =
sparkConf.get(DOCKER_IMAGE_PULL_POLICY)
+ private val executorPort = sparkConf.getInt("spark.executor.port",
DEFAULT_STATIC_PORT)
+ private val blockmanagerPort = sparkConf
+ .getInt("spark.blockmanager.port", DEFAULT_BLOCKMANAGER_PORT)
+ private val kubernetesDriverPodName = sparkConf
+ .get(KUBERNETES_DRIVER_POD_NAME)
+ .getOrElse(throw new SparkException("Must specify the driver pod
name"))
+
+ private val executorPodNamePrefix =
sparkConf.get(KUBERNETES_EXECUTOR_POD_NAME_PREFIX)
+
+ private val executorMemoryMiB =
sparkConf.get(org.apache.spark.internal.config.EXECUTOR_MEMORY)
+ private val executorMemoryString = sparkConf.get(
+ org.apache.spark.internal.config.EXECUTOR_MEMORY.key,
+ org.apache.spark.internal.config.EXECUTOR_MEMORY.defaultValueString)
+
+ private val memoryOverheadMiB = sparkConf
+ .get(KUBERNETES_EXECUTOR_MEMORY_OVERHEAD)
+ .getOrElse(math.max((MEMORY_OVERHEAD_FACTOR * executorMemoryMiB).toInt,
+ MEMORY_OVERHEAD_MIN_MIB))
+ private val executorMemoryWithOverhead = executorMemoryMiB +
memoryOverheadMiB
+
+ private val executorCores = sparkConf.getDouble("spark.executor.cores",
1d)
+ private val executorLimitCores =
sparkConf.getOption(KUBERNETES_EXECUTOR_LIMIT_CORES.key)
+
+ override def createExecutorPod(
+ executorId: String,
+ applicationId: String,
+ driverUrl: String,
+ executorEnvs: Seq[(String, String)],
+ driverPod: Pod,
+ nodeToLocalTaskCount: Map[String, Int]): Pod = {
+ val name = s"$executorPodNamePrefix-exec-$executorId"
+
+ // hostname must be no longer than 63 characters, so take the last 63
characters of the pod
+ // name as the hostname. This preserves uniqueness since the end of
name contains
+ // executorId and applicationId
+ val hostname = name.substring(Math.max(0, name.length - 63))
+ val resolvedExecutorLabels = Map(
+ SPARK_EXECUTOR_ID_LABEL -> executorId,
+ SPARK_APP_ID_LABEL -> applicationId,
+ SPARK_ROLE_LABEL -> SPARK_POD_EXECUTOR_ROLE) ++
+ executorLabels
+ val executorMemoryQuantity = new QuantityBuilder(false)
+ .withAmount(s"${executorMemoryMiB}Mi")
+ .build()
+ val executorMemoryLimitQuantity = new QuantityBuilder(false)
+ .withAmount(s"${executorMemoryWithOverhead}Mi")
+ .build()
+ val executorCpuQuantity = new QuantityBuilder(false)
+ .withAmount(executorCores.toString)
+ .build()
+ val executorExtraClasspathEnv = executorExtraClasspath.map { cp =>
+ new EnvVarBuilder()
+ .withName(ENV_EXECUTOR_EXTRA_CLASSPATH)
+ .withValue(cp)
+ .build()
+ }
+ val executorExtraJavaOptionsEnv = sparkConf
+ .get(org.apache.spark.internal.config.EXECUTOR_JAVA_OPTIONS)
+ .map { opts =>
+ val delimitedOpts = Utils.splitCommandString(opts)
+ delimitedOpts.zipWithIndex.map {
+ case (opt, index) =>
+ new
EnvVarBuilder().withName(s"$ENV_JAVA_OPT_PREFIX$index").withValue(opt).build()
+ }
+ }.getOrElse(Seq.empty[EnvVar])
+ val executorEnv = (Seq(
+ (ENV_EXECUTOR_PORT, executorPort.toString),
+ (ENV_DRIVER_URL, driverUrl),
+ // Executor backend expects integral value for executor cores, so
round it up to an int.
+ (ENV_EXECUTOR_CORES, math.ceil(executorCores).toInt.toString),
+ (ENV_EXECUTOR_MEMORY, executorMemoryString),
+ (ENV_APPLICATION_ID, applicationId),
+ (ENV_EXECUTOR_ID, executorId),
+ (ENV_MOUNTED_CLASSPATH, s"$executorJarsDownloadDir/*")) ++
executorEnvs)
+ .map(env => new EnvVarBuilder()
+ .withName(env._1)
+ .withValue(env._2)
+ .build()
+ ) ++ Seq(
+ new EnvVarBuilder()
+ .withName(ENV_EXECUTOR_POD_IP)
+ .withValueFrom(new EnvVarSourceBuilder()
+ .withNewFieldRef("v1", "status.podIP")
+ .build())
+ .build()
--- End diff --
Thanks for clarifying @mccheah.
One clarification though:
> IP addresses are strictly managed by the Kubernetes framework, so it's
unlikely we're going to run into differences between Ipv4 and Ipv6 in different
Kubernetes clusters. We should assume that one of these two address types are
being used across all clusters and work with that
When I referred to IPv6 support, I was not referring to interop between
IPv4 and IPv6 (that is a different can of worms !). What I wanted to clarify
was that IPv6 is not supported as IP (supported via hostnames though).
If all we are getting are IPv4 ip's, I do not see any obvious issues.
> The Kubernetes code needs to be intelligent about knowing which pods are
co-located on the same underlying Kubelet
This would be critical to get HOST locality level working properly. The
performance implications of not getting this right would be non trivial.
Looking forward to how this has been addressed !
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]