Github user imatiach-msft commented on a diff in the pull request:

    https://github.com/apache/spark/pull/19439#discussion_r147737461
  
    --- Diff: mllib/src/main/scala/org/apache/spark/ml/image/ImageSchema.scala 
---
    @@ -0,0 +1,252 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.ml.image
    +
    +import java.awt.Color
    +import java.awt.color.ColorSpace
    +import java.io.ByteArrayInputStream
    +import javax.imageio.ImageIO
    +
    +import org.apache.spark.annotation.{Experimental, Since}
    +import org.apache.spark.input.PortableDataStream
    +import org.apache.spark.sql.{DataFrame, Row, SparkSession}
    +import org.apache.spark.sql.types._
    +
    +@Experimental
    +@Since("2.3.0")
    +object ImageSchema {
    +
    +  val undefinedImageType = "Undefined"
    +
    +  val imageFields = Array("origin", "height", "width", "nChannels", 
"mode", "data")
    +
    +  val ocvTypes = Map(
    +    undefinedImageType -> -1,
    +    "CV_8U" -> 0, "CV_8UC1" -> 0, "CV_8UC3" -> 16, "CV_8UC4" -> 24
    +  )
    +
    +  /**
    +   * Schema for the image column: Row(String, Int, Int, Int, Int, 
Array[Byte])
    +   */
    +  val columnSchema = StructType(
    +    StructField(imageFields(0), StringType, true) ::
    +    StructField(imageFields(1), IntegerType, false) ::
    +    StructField(imageFields(2), IntegerType, false) ::
    +    StructField(imageFields(3), IntegerType, false) ::
    +    // OpenCV-compatible type: CV_8UC3 in most cases
    +    StructField(imageFields(4), IntegerType, false) ::
    +    // Bytes in OpenCV-compatible order: row-wise BGR in most cases
    +    StructField(imageFields(5), BinaryType, false) :: Nil)
    +
    +  /**
    +   * DataFrame with a single column of images named "image" (nullable)
    +   */
    +  val imageSchema = StructType(StructField("image", columnSchema, true) :: 
Nil)
    +
    +  /**
    +   * :: Experimental ::
    +   * Gets the origin of the image
    +   *
    +   * @return The origin of the image
    +   */
    +  def getOrigin(row: Row): String = row.getString(0)
    +
    +  /**
    +   * :: Experimental ::
    +   * Gets the height of the image
    +   *
    +   * @return The height of the image
    +   */
    +  def getHeight(row: Row): Int = row.getInt(1)
    +
    +  /**
    +   * :: Experimental ::
    +   * Gets the width of the image
    +   *
    +   * @return The width of the image
    +   */
    +  def getWidth(row: Row): Int = row.getInt(2)
    +
    +  /**
    +   * :: Experimental ::
    +   * Gets the number of channels in the image
    +   *
    +   * @return The number of channels in the image
    +   */
    +  def getNChannels(row: Row): Int = row.getInt(3)
    +
    +  /**
    +   * :: Experimental ::
    +   * Gets the OpenCV representation as an int
    +   *
    +   * @return The OpenCV representation as an int
    +   */
    +  def getMode(row: Row): Int = row.getInt(4)
    +
    +  /**
    +   * :: Experimental ::
    +   * Gets the image data
    +   *
    +   * @return The image data
    +   */
    +  def getData(row: Row): Array[Byte] = row.getAs[Array[Byte]](5)
    +
    +  /**
    +   * :: Experimental ::
    +   * Check if the DataFrame column contains images (i.e. has ImageSchema)
    +   *
    +   * @param df DataFrame
    +   * @param column Column name
    +   * @return True if the given column matches the image schema
    +   */
    +  def isImageColumn(df: DataFrame, column: String): Boolean =
    +    df.schema(column).dataType == columnSchema
    --- End diff --
    
    removed


---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to