Github user viirya commented on a diff in the pull request:
https://github.com/apache/spark/pull/19527#discussion_r150404680
--- Diff:
mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoderEstimator.scala
---
@@ -0,0 +1,456 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.feature
+
+import org.apache.hadoop.fs.Path
+
+import org.apache.spark.SparkException
+import org.apache.spark.annotation.Since
+import org.apache.spark.ml.{Estimator, Model}
+import org.apache.spark.ml.attribute._
+import org.apache.spark.ml.linalg.Vectors
+import org.apache.spark.ml.param._
+import org.apache.spark.ml.param.shared.{HasHandleInvalid, HasInputCols,
HasOutputCols}
+import org.apache.spark.ml.util._
+import org.apache.spark.sql.{DataFrame, Dataset}
+import org.apache.spark.sql.expressions.UserDefinedFunction
+import org.apache.spark.sql.functions.{col, lit, udf}
+import org.apache.spark.sql.types.{DoubleType, NumericType, StructField,
StructType}
+
+/** Private trait for params and common methods for OneHotEncoderEstimator
and OneHotEncoderModel */
+private[ml] trait OneHotEncoderBase extends Params with HasHandleInvalid
+ with HasInputCols with HasOutputCols {
+
+ /**
+ * Param for how to handle invalid data.
+ * Options are 'keep' (invalid data produces a vector of zeros) or
'error' (throw an error).
+ * Default: "error"
+ * @group param
+ */
+ @Since("2.3.0")
+ override val handleInvalid: Param[String] = new Param[String](this,
"handleInvalid",
+ "How to handle invalid data " +
+ "Options are 'keep' (invalid data produces a vector of zeros) or error
(throw an error).",
+
ParamValidators.inArray(OneHotEncoderEstimator.supportedHandleInvalids))
+
+ setDefault(handleInvalid, OneHotEncoderEstimator.ERROR_INVALID)
+
+ /**
+ * Whether to drop the last category in the encoded vector (default:
true)
+ * @group param
+ */
+ @Since("2.3.0")
+ final val dropLast: BooleanParam =
+ new BooleanParam(this, "dropLast", "whether to drop the last category")
+ setDefault(dropLast -> true)
+
+ /** @group getParam */
+ @Since("2.3.0")
+ def getDropLast: Boolean = $(dropLast)
+
+ protected def validateAndTransformSchema(schema: StructType): StructType
= {
+ val inputColNames = $(inputCols)
+ val outputColNames = $(outputCols)
+ val existingFields = schema.fields
+
+ require(inputColNames.length == outputColNames.length,
+ s"The number of input columns ${inputColNames.length} must be the
same as the number of " +
+ s"output columns ${outputColNames.length}.")
+
+ inputColNames.zip(outputColNames).map { case (inputColName,
outputColName) =>
+ require(schema(inputColName).dataType.isInstanceOf[NumericType],
+ s"Input column must be of type NumericType but got
${schema(inputColName).dataType}")
+ require(!existingFields.exists(_.name == outputColName),
+ s"Output column $outputColName already exists.")
+ }
+
+ // Prepares output columns with proper attributes by examining input
columns.
+ val inputFields = $(inputCols).map(schema(_))
+
+ val outputFields = inputFields.zip(outputColNames).map { case
(inputField, outputColName) =>
+ OneHotEncoderCommon.transformOutputColumnSchema(
+ inputField, $(dropLast), outputColName)
+ }
+ StructType(schema.fields ++ outputFields)
+ }
+}
+
+/**
+ * A one-hot encoder that maps a column of category indices to a column of
binary vectors, with
+ * at most a single one-value per row that indicates the input category
index.
+ * For example with 5 categories, an input value of 2.0 would map to an
output vector of
+ * `[0.0, 0.0, 1.0, 0.0]`.
+ * The last category is not included by default (configurable via
`dropLast`),
+ * because it makes the vector entries sum up to one, and hence linearly
dependent.
+ * So an input value of 4.0 maps to `[0.0, 0.0, 0.0, 0.0]`.
+ *
+ * @note This is different from scikit-learn's OneHotEncoder, which keeps
all categories.
+ * The output vectors are sparse.
+ *
+ * @see `StringIndexer` for converting categorical values into category
indices
+ */
+@Since("2.3.0")
+class OneHotEncoderEstimator @Since("2.3.0") (@Since("2.3.0") override val
uid: String)
+ extends Estimator[OneHotEncoderModel] with OneHotEncoderBase with
DefaultParamsWritable {
+
+ @Since("2.3.0")
+ def this() = this(Identifiable.randomUID("oneHotEncoder"))
+
+ /** @group setParam */
+ @Since("2.3.0")
+ def setInputCols(values: Array[String]): this.type = set(inputCols,
values)
+
+ /** @group setParam */
+ @Since("2.3.0")
+ def setOutputCols(values: Array[String]): this.type = set(outputCols,
values)
+
+ /** @group setParam */
+ @Since("2.3.0")
+ def setDropLast(value: Boolean): this.type = set(dropLast, value)
+
+ /** @group setParam */
+ @Since("2.3.0")
+ def setHandleInvalid(value: String): this.type = set(handleInvalid,
value)
+
+ @Since("2.3.0")
+ override def transformSchema(schema: StructType): StructType = {
+ validateAndTransformSchema(schema)
+ }
+
+ @Since("2.3.0")
+ override def fit(dataset: Dataset[_]): OneHotEncoderModel = {
+ val transformedSchema = transformSchema(dataset.schema)
+ val categorySizes = new Array[Int]($(outputCols).length)
+
+ val columnToScanIndices = $(outputCols).zipWithIndex.flatMap { case
(outputColName, idx) =>
+ val numOfAttrs = AttributeGroup.fromStructField(
+ transformedSchema(outputColName)).size
+ if (numOfAttrs < 0) {
+ Some(idx)
+ } else {
+ categorySizes(idx) = numOfAttrs
+ None
+ }
+ }
+
+ // Some input columns don't have attributes or their attributes don't
have necessary info.
+ // We need to scan the data to get the number of values for each
column.
+ if (columnToScanIndices.length > 0) {
+ val inputColNames = columnToScanIndices.map($(inputCols)(_))
+ val outputColNames = columnToScanIndices.map($(outputCols)(_))
+ val attrGroups = OneHotEncoderCommon.getOutputAttrGroupFromData(
+ dataset, $(dropLast), inputColNames, outputColNames)
+ attrGroups.zip(columnToScanIndices).foreach { case (attrGroup, idx)
=>
+ categorySizes(idx) = attrGroup.size
+ }
+ }
+
+ val model = new OneHotEncoderModel(uid, categorySizes).setParent(this)
+ copyValues(model)
+ }
+
+ @Since("2.3.0")
+ override def copy(extra: ParamMap): OneHotEncoderEstimator =
defaultCopy(extra)
+}
+
+@Since("2.3.0")
+object OneHotEncoderEstimator extends
DefaultParamsReadable[OneHotEncoderEstimator] {
+
+ private[feature] val KEEP_INVALID: String = "keep"
+ private[feature] val ERROR_INVALID: String = "error"
+ private[feature] val supportedHandleInvalids: Array[String] =
Array(KEEP_INVALID, ERROR_INVALID)
--- End diff --
For one hot encoder, I'm not sure if "skip" is an useful option. sklearn.
`sklearn.preprocessing.OneHotEncoder` only supports "error" and 'ignore" (i.e.,
"keep") too.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]