Github user icexelloss commented on a diff in the pull request:
https://github.com/apache/spark/pull/19872#discussion_r161855044
--- Diff: python/pyspark/sql/tests.py ---
@@ -4279,6 +4272,386 @@ def test_unsupported_types(self):
df.groupby('id').apply(f).collect()
[email protected](not _have_pandas or not _have_arrow, "Pandas or Arrow not
installed")
+class GroupbyAggTests(ReusedSQLTestCase):
+
+ @property
+ def data(self):
+ from pyspark.sql.functions import array, explode, col, lit
+ return self.spark.range(10).toDF('id') \
+ .withColumn("vs", array([lit(i * 1.0) + col('id') for i in
range(20, 30)])) \
+ .withColumn("v", explode(col('vs'))) \
+ .drop('vs') \
+ .withColumn('w', lit(1.0))
+
+ @property
+ def plus_one(self):
+ from pyspark.sql.functions import udf
+
+ @udf('double')
+ def plus_one(v):
+ assert isinstance(v, (int, float))
+ return v + 1
+ return plus_one
+
+ @property
+ def plus_two(self):
+ import pandas as pd
+ from pyspark.sql.functions import pandas_udf, PandasUDFType
+
+ @pandas_udf('double', PandasUDFType.SCALAR)
+ def plus_two(v):
+ assert isinstance(v, pd.Series)
+ return v + 2
+ return plus_two
+
+ @property
+ def mean_udf(self):
+ from pyspark.sql.functions import pandas_udf, PandasUDFType
+
+ @pandas_udf('double', PandasUDFType.GROUP_AGG)
+ def mean_udf(v):
+ return v.mean()
+ return mean_udf
+
+ @property
+ def sum_udf(self):
+ from pyspark.sql.functions import pandas_udf, PandasUDFType
+
+ @pandas_udf('double', PandasUDFType.GROUP_AGG)
+ def sum_udf(v):
+ return v.sum()
+ return sum_udf
+
+ @property
+ def weighted_mean_udf(self):
+ import numpy as np
+ from pyspark.sql.functions import pandas_udf, PandasUDFType
+
+ @pandas_udf('double', PandasUDFType.GROUP_AGG)
+ def weighted_mean_udf(v, w):
+ return np.average(v, weights=w)
+ return weighted_mean_udf
+
+ def test_basic(self):
+ from pyspark.sql.functions import col, lit, sum, mean
+
+ df = self.data
+ weighted_mean_udf = self.weighted_mean_udf
+
+ result1 = df.groupby('id').agg(weighted_mean_udf(df.v,
lit(1.0))).sort('id')
+ expected1 =
df.groupby('id').agg(mean(df.v).alias('weighted_mean_udf(v, 1.0)')).sort('id')
+ self.assertPandasEqual(expected1.toPandas(), result1.toPandas())
+
+ result2 = df.groupby((col('id') + 1)).agg(weighted_mean_udf(df.v,
lit(1.0)))\
+ .sort(df.id + 1)
+ expected2 = df.groupby((col('id') + 1))\
+ .agg(mean(df.v).alias('weighted_mean_udf(v, 1.0)')).sort(df.id
+ 1)
+ self.assertPandasEqual(expected2.toPandas(), result2.toPandas())
+
+ result3 = df.groupby('id').agg(weighted_mean_udf(df.v,
df.w)).sort('id')
+ expected3 =
df.groupby('id').agg(mean(df.v).alias('weighted_mean_udf(v, w)')).sort('id')
+ self.assertPandasEqual(expected3.toPandas(), result3.toPandas())
+
+ result4 = df.groupby((col('id') + 1).alias('id'))\
+ .agg(weighted_mean_udf(df.v, df.w))\
+ .sort('id')
+ expected4 = df.groupby((col('id') + 1).alias('id'))\
+ .agg(mean(df.v).alias('weighted_mean_udf(v, w)'))\
+ .sort('id')
+ self.assertPandasEqual(expected4.toPandas(), result4.toPandas())
+
+ def test_array(self):
--- End diff --
Done. Also added test case for map type.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]