Github user maropu commented on the issue:

    https://github.com/apache/spark/pull/21215
  
    How about this?
    ```
    
    scala> val df = Seq(Outer(Seq.empty[Inner]), 
Outer(Seq.empty[Inner])).toDF("a")
    df: org.apache.spark.sql.DataFrame = [a: array<struct<b:int,c:string>>]
    
    scala> df.printSchema
    root
     |-- a: array (nullable = true)
     |    |-- element: struct (containsNull = true)
     |    |    |-- b: integer (nullable = false)
     |    |    |-- c: string (nullable = true)
    
    scala> df.show
    +---+
    |  a|
    +---+
    | []|
    | []|
    +---+
    
    
    scala> val df = Seq(1, 2, 3).toDF("a").withColumn("b", 
typedLit(Seq.empty[Inner]))
    df: org.apache.spark.sql.DataFrame = [a: int, b: 
array<struct<b:int,c:string>>]
    
    scala> df.printSchema
    root
     |-- a: integer (nullable = false)
     |-- b: array (nullable = false)
     |    |-- element: struct (containsNull = true)
     |    |    |-- b: integer (nullable = false)
     |    |    |-- c: string (nullable = true)
    
    scala> df.show
    +---+---+
    |  a|  b|
    +---+---+
    |  1| []|
    |  2| []|
    |  3| []|
    +---+---+
    ```


---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to