Github user jkbradley commented on a diff in the pull request:

    https://github.com/apache/spark/pull/21129#discussion_r186569928
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/ml/classification/GBTClassifierSuite.scala
 ---
    @@ -365,6 +366,50 @@ class GBTClassifierSuite extends MLTest with 
DefaultReadWriteTest {
         assert(mostImportantFeature !== mostIF)
       }
     
    +  test("runWithValidation stops early and performs better on a validation 
dataset") {
    +    val validationIndicatorCol = "validationIndicator"
    +    val trainDF = trainData.toDF().withColumn(validationIndicatorCol, 
lit(false))
    +    val validationDF = 
validationData.toDF().withColumn(validationIndicatorCol, lit(true))
    +
    +    val numIter = 20
    +    for (lossType <- GBTClassifier.supportedLossTypes) {
    +      val gbt = new GBTClassifier()
    +        .setSeed(123)
    +        .setMaxDepth(2)
    +        .setLossType(lossType)
    +        .setMaxIter(numIter)
    +      val modelWithoutValidation = gbt.fit(trainDF)
    +
    +      gbt.setValidationIndicatorCol(validationIndicatorCol)
    +      val modelWithValidation = gbt.fit(trainDF.union(validationDF))
    +
    +      // early stop
    +      assert(modelWithValidation.numTrees < numIter)
    --- End diff --
    
    Let's also assert `modelWithoutValidation.numTrees == numIter`.  That's 
true now, but I could imagine it changing later on if we add a convergence 
tolerance to the algorithm.


---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to