Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/21090#discussion_r188813735
--- Diff:
mllib/src/main/scala/org/apache/spark/ml/clustering/PowerIterationClustering.scala
---
@@ -0,0 +1,256 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.ml.clustering
+
+import org.apache.spark.annotation.{Experimental, Since}
+import org.apache.spark.ml.Transformer
+import org.apache.spark.ml.param._
+import org.apache.spark.ml.param.shared._
+import org.apache.spark.ml.util._
+import org.apache.spark.mllib.clustering.{PowerIterationClustering =>
MLlibPowerIterationClustering}
+import org.apache.spark.rdd.RDD
+import org.apache.spark.sql.{DataFrame, Dataset, Row}
+import org.apache.spark.sql.functions.col
+import org.apache.spark.sql.types._
+
+/**
+ * Common params for PowerIterationClustering
+ */
+private[clustering] trait PowerIterationClusteringParams extends Params
with HasMaxIter
+ with HasPredictionCol {
+
+ /**
+ * The number of clusters to create (k). Must be > 1. Default: 2.
+ * @group param
+ */
+ @Since("2.4.0")
+ final val k = new IntParam(this, "k", "The number of clusters to create.
" +
+ "Must be > 1.", ParamValidators.gt(1))
+
+ /** @group getParam */
+ @Since("2.4.0")
+ def getK: Int = $(k)
+
+ /**
+ * Param for the initialization algorithm. This can be either "random"
to use a random vector
+ * as vertex properties, or "degree" to use a normalized sum of
similarities with other vertices.
+ * Default: random.
+ * @group expertParam
+ */
+ @Since("2.4.0")
+ final val initMode = {
+ val allowedParams = ParamValidators.inArray(Array("random", "degree"))
+ new Param[String](this, "initMode", "The initialization algorithm.
This can be either " +
+ "'random' to use a random vector as vertex properties, or 'degree'
to use a normalized sum " +
+ "of similarities with other vertices. Supported options: 'random'
and 'degree'.",
+ allowedParams)
+ }
+
+ /** @group expertGetParam */
+ @Since("2.4.0")
+ def getInitMode: String = $(initMode)
+
+ /**
+ * Param for the name of the input column for vertex IDs.
+ * Default: "id"
+ * @group param
+ */
+ @Since("2.4.0")
+ val idCol = new Param[String](this, "idCol", "Name of the input column
for vertex IDs.",
+ (value: String) => value.nonEmpty)
+
+ setDefault(idCol, "id")
+
+ /** @group getParam */
+ @Since("2.4.0")
+ def getIdCol: String = getOrDefault(idCol)
+
+ /**
+ * Param for the name of the input column for neighbors in the adjacency
list representation.
+ * Default: "neighbors"
+ * @group param
+ */
+ @Since("2.4.0")
+ val neighborsCol = new Param[String](this, "neighborsCol",
+ "Name of the input column for neighbors in the adjacency list
representation.",
+ (value: String) => value.nonEmpty)
+
+ setDefault(neighborsCol, "neighbors")
+
+ /** @group getParam */
+ @Since("2.4.0")
+ def getNeighborsCol: String = $(neighborsCol)
+
+ /**
+ * Param for the name of the input column for neighbors in the adjacency
list representation.
+ * Default: "similarities"
+ * @group param
+ */
+ @Since("2.4.0")
+ val similaritiesCol = new Param[String](this, "similaritiesCol",
+ "Name of the input column for neighbors in the adjacency list
representation.",
+ (value: String) => value.nonEmpty)
+
--- End diff --
No, it's meant to be an adjacency list representation of the graph:
neighborsCol has the set of neighbor vertex IDs, and similaritiesCol has the
corresponding set of edge weights.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]