Github user jkbradley commented on a diff in the pull request:

    https://github.com/apache/spark/pull/3118#discussion_r19986248
  
    --- Diff: 
mllib/src/test/scala/org/apache/spark/mllib/evaluation/BinaryClassificationMetricsSuite.scala
 ---
    @@ -59,4 +59,60 @@ class BinaryClassificationMetricsSuite extends FunSuite 
with LocalSparkContext {
         
assert(metrics.precisionByThreshold().collect().zip(threshold.zip(precision)).forall(cond2))
         
assert(metrics.recallByThreshold().collect().zip(threshold.zip(recall)).forall(cond2))
       }
    +
    +  test("binary evaluation metrics for All Positive RDD") {
    +    val scoreAndLabels = sc.parallelize(Seq((0.5, 1.0)), 2)
    +    val metrics: BinaryClassificationMetrics = new 
BinaryClassificationMetrics(scoreAndLabels)
    +
    +    val threshold = Seq(0.5)
    +    val precision = Seq(1.0)
    +    val recall = Seq(1.0)
    +    val fpr = Seq(0.0)
    +    val rocCurve = Seq((0.0, 0.0)) ++ fpr.zip(recall) ++ Seq((1.0, 1.0))
    +    val pr = recall.zip(precision)
    +    val prCurve = Seq((0.0, 1.0)) ++ pr
    +    val f1 = pr.map { case (r, p) => 2.0 * (p * r) / (p + r)}
    +    val f2 = pr.map { case (r, p) => 5.0 * (p * r) / (4.0 * p + r)}
    +
    +    assert(metrics.thresholds().collect().zip(threshold).forall(cond1))
    +    assert(metrics.roc().collect().zip(rocCurve).forall(cond2))
    +    assert(metrics.areaUnderROC() ~== AreaUnderCurve.of(rocCurve) absTol 
1E-5)
    +    assert(metrics.pr().collect().zip(prCurve).forall(cond2))
    +    assert(metrics.areaUnderPR() ~== AreaUnderCurve.of(prCurve) absTol 
1E-5)
    +    
assert(metrics.fMeasureByThreshold().collect().zip(threshold.zip(f1)).forall(cond2))
    +    
assert(metrics.fMeasureByThreshold(2.0).collect().zip(threshold.zip(f2)).forall(cond2))
    +    
assert(metrics.precisionByThreshold().collect().zip(threshold.zip(precision)).forall(cond2))
    +    
assert(metrics.recallByThreshold().collect().zip(threshold.zip(recall)).forall(cond2))
    +  }
    +
    +  test("binary evaluation metrics for All Negative RDD") {
    +    val scoreAndLabels = sc.parallelize(Seq((0.5, 0.0)), 2)
    +    val metrics: BinaryClassificationMetrics = new 
BinaryClassificationMetrics(scoreAndLabels)
    +
    +    val threshold = Seq(0.5)
    +    val precision = Seq(0.0)
    +    val recall = Seq(0.0)
    +    val fpr = Seq(1.0)
    +    val rocCurve = Seq((0.0, 0.0)) ++ fpr.zip(recall) ++ Seq((1.0, 1.0))
    +    val pr = recall.zip(precision)
    +    val prCurve = Seq((0.0, 1.0)) ++ pr
    +    val f1 = pr.map {
    +      case (0,0) => 0.0
    +      case (r, p) => 2.0 * (p * r) / (p + r)
    +    }
    +    val f2 = pr.map {
    +      case (0,0) => 0.0
    --- End diff --
    
    ditto (space)


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to