Github user gaborgsomogyi commented on a diff in the pull request:
https://github.com/apache/spark/pull/22138#discussion_r214853362
--- Diff:
external/kafka-0-10-sql/src/main/scala/org/apache/spark/sql/kafka010/KafkaDataConsumer.scala
---
@@ -18,222 +18,247 @@
package org.apache.spark.sql.kafka010
import java.{util => ju}
+import java.io.Closeable
import java.util.concurrent.TimeoutException
import scala.collection.JavaConverters._
import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord,
KafkaConsumer, OffsetOutOfRangeException}
import org.apache.kafka.common.TopicPartition
-import org.apache.spark.{SparkEnv, SparkException, TaskContext}
+import org.apache.spark.TaskContext
import org.apache.spark.internal.Logging
-import org.apache.spark.sql.kafka010.KafkaDataConsumer.AvailableOffsetRange
+import
org.apache.spark.sql.kafka010.KafkaDataConsumer.{AvailableOffsetRange,
CacheKey, UNKNOWN_OFFSET}
import org.apache.spark.sql.kafka010.KafkaSourceProvider._
-import org.apache.spark.util.UninterruptibleThread
+import org.apache.spark.util.{ShutdownHookManager, UninterruptibleThread}
+
+/**
+ * This class simplifies the usages of Kafka consumer in Spark SQL Kafka
connector.
+ *
+ * NOTE: Like KafkaConsumer, this class is not thread-safe.
+ * NOTE for contributors: It is possible for the instance to be used from
multiple callers,
+ * so all the methods should not rely on current cursor and use seek
manually.
+ */
+private[kafka010] class InternalKafkaConsumer(
+ val topicPartition: TopicPartition,
+ val kafkaParams: ju.Map[String, Object]) extends Closeable with
Logging {
+
+ val groupId =
kafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG).asInstanceOf[String]
+
+ private val consumer = createConsumer
-private[kafka010] sealed trait KafkaDataConsumer {
/**
- * Get the record for the given offset if available.
- *
- * If the record is invisible (either a
- * transaction message, or an aborted message when the consumer's
`isolation.level` is
- * `read_committed`), it will be skipped and this method will try to
fetch next available record
- * within [offset, untilOffset).
- *
- * This method also will try its best to detect data loss. If
`failOnDataLoss` is `true`, it will
- * throw an exception when we detect an unavailable offset. If
`failOnDataLoss` is `false`, this
- * method will try to fetch next available record within [offset,
untilOffset).
- *
- * When this method tries to skip offsets due to either invisible
messages or data loss and
- * reaches `untilOffset`, it will return `null`.
+ * Poll messages from Kafka starting from `offset` and returns a pair of
"list of consumer record"
+ * and "offset after poll". The list of consumer record may be empty if
the Kafka consumer fetches
+ * some messages but all of them are not visible messages (either
transaction messages,
+ * or aborted messages when `isolation.level` is `read_committed`).
*
- * @param offset the offset to fetch.
- * @param untilOffset the max offset to fetch. Exclusive.
- * @param pollTimeoutMs timeout in milliseconds to poll data from Kafka.
- * @param failOnDataLoss When `failOnDataLoss` is `true`, this method
will either return record at
- * offset if available, or throw exception.when
`failOnDataLoss` is `false`,
- * this method will either return record at offset
if available, or return
- * the next earliest available record less than
untilOffset, or null. It
- * will not throw any exception.
+ * @throws OffsetOutOfRangeException if `offset` is out of range.
+ * @throws TimeoutException if the consumer position is not changed
after polling. It means the
+ * consumer polls nothing before timeout.
*/
- def get(
- offset: Long,
- untilOffset: Long,
- pollTimeoutMs: Long,
- failOnDataLoss: Boolean): ConsumerRecord[Array[Byte], Array[Byte]] =
{
- internalConsumer.get(offset, untilOffset, pollTimeoutMs,
failOnDataLoss)
+ def fetch(offset: Long, pollTimeoutMs: Long)
+ : (ju.List[ConsumerRecord[Array[Byte], Array[Byte]]], Long) = {
+ // Seek to the offset because we may call seekToBeginning or seekToEnd
before this.
+ seek(offset)
+ val p = consumer.poll(pollTimeoutMs)
+ val r = p.records(topicPartition)
+ logDebug(s"Polled $groupId ${p.partitions()} ${r.size}")
+ val offsetAfterPoll = consumer.position(topicPartition)
+ logDebug(s"Offset changed from $offset to $offsetAfterPoll after
polling")
+ val fetchedData = (r, offsetAfterPoll)
+ if (r.isEmpty) {
+ // We cannot fetch anything after `poll`. Two possible cases:
+ // - `offset` is out of range so that Kafka returns nothing.
`OffsetOutOfRangeException` will
+ // be thrown.
+ // - Cannot fetch any data before timeout. `TimeoutException` will
be thrown.
+ // - Fetched something but all of them are not invisible. This is a
valid case and let the
+ // caller handles this.
+ val range = getAvailableOffsetRange()
+ if (offset < range.earliest || offset >= range.latest) {
+ throw new OffsetOutOfRangeException(
+ Map(topicPartition -> java.lang.Long.valueOf(offset)).asJava)
+ } else if (offset == offsetAfterPoll) {
+ throw new TimeoutException(
+ s"Cannot fetch record for offset $offset in $pollTimeoutMs
milliseconds")
+ }
+ }
+ fetchedData
}
/**
* Return the available offset range of the current partition. It's a
pair of the earliest offset
* and the latest offset.
*/
- def getAvailableOffsetRange(): AvailableOffsetRange =
internalConsumer.getAvailableOffsetRange()
+ def getAvailableOffsetRange(): AvailableOffsetRange = {
+ consumer.seekToBeginning(Set(topicPartition).asJava)
+ val earliestOffset = consumer.position(topicPartition)
+ consumer.seekToEnd(Set(topicPartition).asJava)
+ val latestOffset = consumer.position(topicPartition)
+ AvailableOffsetRange(earliestOffset, latestOffset)
+ }
- /**
- * Release this consumer from being further used. Depending on its
implementation,
- * this consumer will be either finalized, or reset for reuse later.
- */
- def release(): Unit
+ override def close(): Unit = {
+ consumer.close()
+ }
- /** Reference to the internal implementation that this wrapper delegates
to */
- protected def internalConsumer: InternalKafkaConsumer
-}
+ /** Create a KafkaConsumer to fetch records for `topicPartition` */
+ private def createConsumer: KafkaConsumer[Array[Byte], Array[Byte]] = {
+ val c = new KafkaConsumer[Array[Byte], Array[Byte]](kafkaParams)
+ val tps = new ju.ArrayList[TopicPartition]()
+ tps.add(topicPartition)
+ c.assign(tps)
+ c
+ }
+ private def seek(offset: Long): Unit = {
+ logDebug(s"Seeking to $groupId $topicPartition $offset")
+ consumer.seek(topicPartition, offset)
+ }
+}
/**
- * A wrapper around Kafka's KafkaConsumer that throws error when data loss
is detected.
- * This is not for direct use outside this file.
+ * The internal object to store the fetched data from Kafka consumer and
the next offset to poll.
+ *
+ * @param _records the pre-fetched Kafka records.
+ * @param _nextOffsetInFetchedData the next offset in `records`. We use
this to verify if we
+ * should check if the pre-fetched data is
still valid.
+ * @param _offsetAfterPoll the Kafka offset after calling `poll`. We will
use this offset to
+ * poll when `records` is drained.
*/
-private[kafka010] case class InternalKafkaConsumer(
- topicPartition: TopicPartition,
- kafkaParams: ju.Map[String, Object]) extends Logging {
- import InternalKafkaConsumer._
-
- /**
- * The internal object to store the fetched data from Kafka consumer and
the next offset to poll.
- *
- * @param _records the pre-fetched Kafka records.
- * @param _nextOffsetInFetchedData the next offset in `records`. We use
this to verify if we
- * should check if the pre-fetched data
is still valid.
- * @param _offsetAfterPoll the Kafka offset after calling `poll`. We
will use this offset to
- * poll when `records` is drained.
- */
- private case class FetchedData(
- private var _records: ju.ListIterator[ConsumerRecord[Array[Byte],
Array[Byte]]],
- private var _nextOffsetInFetchedData: Long,
- private var _offsetAfterPoll: Long) {
-
- def withNewPoll(
- records: ju.ListIterator[ConsumerRecord[Array[Byte], Array[Byte]]],
- offsetAfterPoll: Long): FetchedData = {
- this._records = records
- this._nextOffsetInFetchedData = UNKNOWN_OFFSET
- this._offsetAfterPoll = offsetAfterPoll
- this
- }
-
- /** Whether there are more elements */
- def hasNext: Boolean = _records.hasNext
-
- /** Move `records` forward and return the next record. */
- def next(): ConsumerRecord[Array[Byte], Array[Byte]] = {
- val record = _records.next()
- _nextOffsetInFetchedData = record.offset + 1
- record
- }
+private[kafka010] case class FetchedData(
--- End diff --
I know it's old code but but this blocks to solve the multiple consumer
extra seek problem.
If this would be readonly it doesn't matter which task gets which consumer.
Consumer just takes a look at the offset indexed data pool for data, gives it
back and makes prefetch again.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]