Github user dbtsai commented on a diff in the pull request:

    https://github.com/apache/spark/pull/3462#discussion_r20968353
  
    --- Diff: mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala 
---
    @@ -261,6 +261,57 @@ object Vectors {
             sys.error("Unsupported Breeze vector type: " + v.getClass.getName)
         }
       }
    +
    +  /**
    +   * Returns the p-norm of this vector.
    +   * @param vector input vector.
    +   * @param p norm.
    +   * @return norm in L^p^ space.
    +   */
    +  private[spark] def norm(vector: Vector, p: Double): Double = {
    +    require(p >= 1.0)
    +    val values = vector match {
    +      case dv: DenseVector => dv.values
    +      case sv: SparseVector => sv.values
    +      case v => throw new IllegalArgumentException("Do not support vector 
type " + v.getClass)
    +    }
    +    val size = values.size
    +
    +    if (p == 1) {
    --- End diff --
    
    In bytecode, there is no direct `switch` operation. As a result, the 
`swtich` or pattern matching will be compiled into `if` statement in the 
bytecode. See the following example
    ```scala
      def fun1(p: Double) = {
        p match {
          case 1.0 => 1.0
          case 2.0 => 2.0
          case _ => p
        }
      }
    
      def fun2(p: Double) = {
        if (p == 1.0) 1.0
        else if (p == 2.0) 2.0
        else p
      }
    ```
    will be compiled to
    ```
      // access flags 0x1
      public fun1(D)D
       L0
        LINENUMBER 145 L0
        DLOAD 1
        DSTORE 3
       L1
        LINENUMBER 146 L1
        DCONST_1
        DLOAD 3
        DCMPL
        IFNE L2
        DCONST_1
        DSTORE 5
        GOTO L3
       L2
        LINENUMBER 147 L2
       FRAME APPEND [D]
        LDC 2.0
        DLOAD 3
        DCMPL
        IFNE L4
        LDC 2.0
        DSTORE 5
        GOTO L3
       L4
        LINENUMBER 148 L4
       FRAME SAME
        DLOAD 1
        DSTORE 5
       L3
        LINENUMBER 145 L3
       FRAME APPEND [D]
        DLOAD 5
        DRETURN
       L5
        LOCALVARIABLE this Lorg/apache/spark/mllib/stat/Test$; L0 L5 0
        LOCALVARIABLE p D L0 L5 1
        MAXSTACK = 4
        MAXLOCALS = 7
    
      // access flags 0x1
      public fun2(D)D
       L0
        LINENUMBER 153 L0
        DLOAD 1
        DCONST_1
        DCMPL
        IFNE L1
        DCONST_1
        GOTO L2
       L1
        LINENUMBER 154 L1
       FRAME SAME
        DLOAD 1
        LDC 2.0
        DCMPL
        IFNE L3
        LDC 2.0
        GOTO L2
       L3
        LINENUMBER 155 L3
       FRAME SAME
        DLOAD 1
       L2
        LINENUMBER 153 L2
       FRAME SAME1 D
        DRETURN
       L4
        LOCALVARIABLE this Lorg/apache/spark/mllib/stat/Test$; L0 L4 0
        LOCALVARIABLE p D L0 L4 1
        MAXSTACK = 4
        MAXLOCALS = 3
    ```


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to