felixcheung commented on a change in pull request #23787: [SPARK-26830][SQL][R]
Vectorized R dapply() implementation
URL: https://github.com/apache/spark/pull/23787#discussion_r259236795
##########
File path: R/pkg/R/DataFrame.R
##########
@@ -1437,6 +1437,29 @@ dapplyInternal <- function(x, func, schema) {
schema <- structType(schema)
}
+ arrowEnabled <- sparkR.conf("spark.sql.execution.arrow.enabled")[[1]] ==
"true"
+ if (arrowEnabled) {
+ requireNamespace1 <- requireNamespace
+ if (!requireNamespace1("arrow", quietly = TRUE)) {
+ stop("'arrow' package should be installed.")
+ }
+ # Currenty Arrow optimization does not support raw for now.
+ # Also, it does not support explicit float type set by users.
+ if (inherits(schema, "structType")) {
+ if (any(sapply(schema$fields(), function(x) x$dataType.toString() ==
"FloatType"))) {
+ stop("Arrow optimization with dapply do not support FloatType yet.")
+ }
+ if (any(sapply(schema$fields(), function(x) x$dataType.toString() ==
"BinaryType"))) {
+ stop("Arrow optimization with dapply do not support BinaryType yet.")
+ }
+ } else if (is.null(schema)) {
+ stop(paste0("Arrow optimization does not support 'dapplyCollect' yet.
Please use ",
+ "'collect' and 'dapply' APIs instead."))
Review comment:
this isn't quite the same though, for example, dapply will need the user to
pass in a schema. should we suggest turning off arrow then use dapplyCollect?
I'm actually not sure - maybe suggest both in the message?
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]