cloud-fan commented on a change in pull request #23778: [SPARK-24935][SQL] : 
Problem with Executing Hive UDF's from Spark 2.2 Onwards
URL: https://github.com/apache/spark/pull/23778#discussion_r264111574
 
 

 ##########
 File path: 
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/aggregate/interfaces.scala
 ##########
 @@ -524,23 +524,142 @@ abstract class TypedImperativeAggregate[T] extends 
ImperativeAggregate {
   /** De-serializes the serialized format Array[Byte], and produces 
aggregation buffer object T */
   def deserialize(storageFormat: Array[Byte]): T
 
+  override def initialize(buffer: InternalRow): Unit = {
+    buffer(mutableAggBufferOffset) = createAggregationBuffer()
+  }
+
+  override def update(buffer: InternalRow, input: InternalRow): Unit = {
+    buffer(mutableAggBufferOffset) = update(getBufferObject(buffer), input)
+  }
+
+  override def merge(buffer: InternalRow, inputBuffer: InternalRow): Unit = {
+    val bufferObject = getBufferObject(buffer)
+    // The inputBuffer stores serialized aggregation buffer object produced by 
partial aggregate
+    val inputObject = deserialize(inputBuffer.getBinary(inputAggBufferOffset))
+    buffer(mutableAggBufferOffset) = merge(bufferObject, inputObject)
+  }
+
+  override def eval(buffer: InternalRow): Any = {
+    eval(getBufferObject(buffer))
+  }
+
+  private[this] val anyObjectType = ObjectType(classOf[AnyRef])
+  private def getBufferObject(bufferRow: InternalRow): T = {
+    bufferRow.get(mutableAggBufferOffset, anyObjectType).asInstanceOf[T]
+  }
+
+  override lazy val aggBufferAttributes: Seq[AttributeReference] = {
+    // Underlying storage type for the aggregation buffer object
+    Seq(AttributeReference("buf", BinaryType)())
+  }
+
+  override lazy val inputAggBufferAttributes: Seq[AttributeReference] =
+    aggBufferAttributes.map(_.newInstance())
+
+  override def aggBufferSchema: StructType = 
StructType.fromAttributes(aggBufferAttributes)
+
+  /**
+   * In-place replaces the aggregation buffer object stored at buffer's index
+   * `mutableAggBufferOffset`, with SparkSQL internally supported underlying 
storage format
+   * (BinaryType).
+   *
+   * This is only called when doing Partial or PartialMerge mode aggregation, 
before the framework
+   * shuffle out aggregate buffers.
+   */
+  def serializeAggregateBufferInPlace(buffer: InternalRow): Unit = {
+    buffer(mutableAggBufferOffset) = serialize(getBufferObject(buffer))
+  }
+}
+
+/**
+ * Aggregation function which allows **arbitrary** user-defined java object to 
be used as internal
+ * aggregation buffer for Hive.
+ */
+abstract class HiveTypedImperativeAggregate[T] extends 
TypedImperativeAggregate[T] {
+
+  /**
+   * Creates an empty aggregation buffer object for partial 1 mode. This is 
called
+   * before processing each key group(group by key).
+   *
+   * @return an aggregation buffer object
+   */
+  def createAggregationBuffer(): T
+
+  /**
+   * Creates an empty aggregation buffer object for partial 2 mode.
+   *
+   * @return an aggregation buffer object
+   */
+  def createPartial2ModeAggregationBuffer(): T
+
+  var partial2ModeBuffer: InternalRow = _
+
+  /**
+   * Updates the aggregation buffer object with an input row and returns a new 
buffer object. For
+   * performance, the function may do in-place update and return it instead of 
constructing new
+   * buffer object.
+   *
+   * This is typically called when doing Partial or Complete mode aggregation.
+   *
+   * @param buffer The aggregation buffer object.
+   * @param input an input row
+   */
+  def update(buffer: T, input: InternalRow): T
+
+  /**
+   * Merges an input aggregation object into aggregation buffer object and 
returns a new buffer
+   * object. For performance, the function may do in-place merge and return it 
instead of
+   * constructing new buffer object.
+   *
+   * This is typically called when doing PartialMerge or Final mode 
aggregation.
+   *
+   * @param buffer the aggregation buffer object used to store the aggregation 
result.
+   * @param input an input aggregation object. Input aggregation object can be 
produced by
+   *              de-serializing the partial aggregate's output from Mapper 
side.
+   */
+  def merge(buffer: T, input: T): T
+
+  /**
+   * Generates the final aggregation result value for current key group with 
the aggregation buffer
+   * object.
+   *
+   * Developer note: the only return types accepted by Spark are:
+   *   - primitive types
+   *   - InternalRow and subclasses
+   *   - ArrayData
+   *   - MapData
+   *
+   * @param buffer aggregation buffer object.
+   * @return The aggregation result of current key group
+   */
+  def eval(buffer: T): Any
+
+  /** Serializes the aggregation buffer object T to Array[Byte] */
+  def serialize(buffer: T): Array[Byte]
+
+  /** De-serializes the serialized format Array[Byte], and produces 
aggregation buffer object T */
+  def deserialize(storageFormat: Array[Byte]): T
+
   final override def initialize(buffer: InternalRow): Unit = {
+    partial2ModeBuffer = buffer.copy()
+    partial2ModeBuffer(mutableAggBufferOffset) = 
createPartial2ModeAggregationBuffer()
 
 Review comment:
   So there are 4 ways to execute a UDAF
   1. init + iterate + terminate partial
   2. init + merge + terminate final
   3. init + merge + terminate partial
   4. init + iterate + terminate final
   
   Spark doesn't really have terminate partial. The agg buffer needs to fit the 
spark schema so Spark can get agg buffer directly. Spark UDAF is flexible: 
after initialized, the buffer can be updated via either iterate or merge, the 
buffer can be terminated always.
   
   IIUC `init + merge + terminate final` is pretty common in GROUP BY queries, 
and Hive UDAF works in this case. Do you know why?
   
   And your test case is `init + iterate + terminate final`, what's the correct 
steps to do it? Is it
   ```
   1. create partial1 buffer
   2. iterate
   3 turn partial1 buffer to partial2 buffer
   4. terminate final
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to