Github user jkbradley commented on a diff in the pull request:
https://github.com/apache/spark/pull/3871#discussion_r22423970
--- Diff:
mllib/src/main/scala/org/apache/spark/mllib/stat/impl/MultivariateGaussian.scala
---
@@ -17,23 +17,62 @@
package org.apache.spark.mllib.stat.impl
-import breeze.linalg.{DenseVector => DBV, DenseMatrix => DBM, Transpose,
det, pinv}
+import breeze.linalg.{DenseVector => DBV, DenseMatrix => DBM, max, diag,
eigSym}
-/**
- * Utility class to implement the density function for multivariate
Gaussian distribution.
- * Breeze provides this functionality, but it requires the Apache
Commons Math library,
- * so this class is here so-as to not introduce a new dependency in
Spark.
- */
+import org.apache.spark.mllib.util.MLUtils
+
+/*
+ * This class provides basic functionality for a Multivariate Gaussian
(Normal) Distribution
+ *
+ * @param mu The mean vector of the distribution
+ * @param sigma The covariance matrix of the distribution
+ */
private[mllib] class MultivariateGaussian(
val mu: DBV[Double],
val sigma: DBM[Double]) extends Serializable {
- private val sigmaInv2 = pinv(sigma) * -0.5
- private val U = math.pow(2.0 * math.Pi, -mu.length / 2.0) *
math.pow(det(sigma), -0.5)
-
+
+ private val (sigmaInv2, u) = calculateCovarianceConstants
+
/** Returns density of this multivariate Gaussian at given point, x */
def pdf(x: DBV[Double]): Double = {
val delta = x - mu
- val deltaTranspose = new Transpose(delta)
- U * math.exp(deltaTranspose * sigmaInv2 * delta)
+ u * math.exp(delta.t * sigmaInv2 * delta)
+ }
+
+ /*
+ * Calculate distribution dependent components used for the density
function:
+ * pdf(x) = (2*pi)^(-k/2) * det(sigma)^(-1/2) * exp( (-1/2) *
(x-mu).t * inv(sigma) * (x-mu) )
+ * where k is length of the mean vector.
+ *
+ * We here compute distribution-fixed parts
+ * (2*pi)^(-k/2) * det(sigma)^(-1/2)
+ * and
+ * (-1/2) * inv(sigma)
+ *
+ * Both the determinant and the inverse can be computed from the
singular value decomposition
+ * of sigma. Noting that covariance matrices are always symmetric and
positive semi-definite,
+ * we can use the eigendecomposition (breeze provides one specifically
for symmetric matrices,
+ * so I am making an assumption here that there is some efficiency gain).
+ *
+ * To guard against singular covariance matrices, this method computes
both the
+ * pseudo-determinant and the pseudo-inverse (Moore-Penrose). Singular
values are considered
+ * to be non-zero only if they exceed a tolerance based on machine
precision, matrix size, and
+ * relation to the maximum singular value (same tolerance used by, ie,
Octave).
+ */
+ private def calculateCovarianceConstants: (DBM[Double], Double) = {
+ val eigSym.EigSym(d, u) = eigSym(sigma) // sigma = u * diag(d) * u.t
+
+ // For numerical stability, values are considered to be non-zero only
if they exceed tol.
+ // This prevents any inverted value from exceeding (eps * n *
max(d))^-1
+ val tol = MLUtils.EPSILON * max(d) * d.length
+
+ // pseudo-determinant is product of all non-zero eigenvalues
+ val pdetSigma = (0 until d.length).map(i => if (d(i) > tol) d(i) else
1.0).reduce(_ * _)
--- End diff --
More concise:
```
val pdetSigma = d.activeValuesIterator.filter(_ > tol).foldLeft(1.0)(_ * _)
```
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]