dongjoon-hyun commented on issue #24724: User friendly dataset, dataframe 
generation for csv datasources without explicit StructType definitions.
URL: https://github.com/apache/spark/pull/24724#issuecomment-496373474
 
 
   First of all, the followings are the most frequent use cases.
   1. HEADER and INFERSCHEMA
   ```
   scala> spark.read.option("header", true).option("inferSchema", 
true).csv("/tmp/csv").as[Person]
   res0: org.apache.spark.sql.Dataset[Person] = [name: string, age: int]
   ```
   
   2. USER-DEFINED SCHEMA or Hive MetaStore
   ```
   scala> case class Person(name: String, age: Long)
   scala> spark.read.schema("name string, age long").csv("/tmp/csv").as[Person]
   res0: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint]
   ```
   
   I believe the above two are more natural.
   
   Anyway, cc @HyukjinKwon and @MaxGekk 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to