dongjoon-hyun edited a comment on issue #24724: User friendly dataset, dataframe generation for csv datasources without explicit StructType definitions. URL: https://github.com/apache/spark/pull/24724#issuecomment-496373474 First of all, the followings are the most frequent use cases. (And, the recommended way.) 1. HEADER and INFERSCHEMA ```scala scala> spark.read.option("header", true).option("inferSchema", true).csv("/tmp/csv").as[Person] res0: org.apache.spark.sql.Dataset[Person] = [name: string, age: int] ``` 2. USER-DEFINED SCHEMA or Hive MetaStore ```scala scala> case class Person(name: String, age: Long) scala> spark.read.schema("name string, age long").csv("/tmp/csv").as[Person] res0: org.apache.spark.sql.Dataset[Person] = [name: string, age: bigint] ``` I believe the above two are more natural. Anyway, cc @HyukjinKwon and @MaxGekk
---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: [email protected] With regards, Apache Git Services --------------------------------------------------------------------- To unsubscribe, e-mail: [email protected] For additional commands, e-mail: [email protected]
