jiangxb1987 commented on a change in pull request #24374: [SPARK-27366][CORE] 
Support GPU Resources in Spark job scheduling
URL: https://github.com/apache/spark/pull/24374#discussion_r288360609
 
 

 ##########
 File path: 
core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala
 ##########
 @@ -139,12 +140,17 @@ class CoarseGrainedSchedulerBackend(scheduler: 
TaskSchedulerImpl, val rpcEnv: Rp
     }
 
     override def receive: PartialFunction[Any, Unit] = {
-      case StatusUpdate(executorId, taskId, state, data) =>
+      case StatusUpdate(executorId, taskId, state, data, resources) =>
         scheduler.statusUpdate(taskId, state, data.value)
         if (TaskState.isFinished(state)) {
           executorDataMap.get(executorId) match {
             case Some(executorInfo) =>
               executorInfo.freeCores += scheduler.CPUS_PER_TASK
+              for ((k, v) <- resources) {
+                executorInfo.availableResources.get(k).foreach { r =>
+                  r.releaseAddresses(v.addresses)
 
 Review comment:
   I refactored the Executor Resource information class, now it only does 
reservation inside TaskScheduler, and manage resources at SchedulerBackend side.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to