imatiach-msft commented on a change in pull request #25926: [SPARK-9612][ML] 
Add instance weight support for GBTs
URL: https://github.com/apache/spark/pull/25926#discussion_r332322818
 
 

 ##########
 File path: 
mllib/src/main/scala/org/apache/spark/ml/tree/impl/GradientBoostedTrees.scala
 ##########
 @@ -299,26 +317,25 @@ private[spark] object GradientBoostedTrees extends 
Logging {
     baseLearners(0) = firstTreeModel
     baseLearnerWeights(0) = firstTreeWeight
 
-    var predError: RDD[(Double, Double)] =
-      computeInitialPredictionAndError(input, firstTreeWeight, firstTreeModel, 
loss)
+    var predError = computeInitialPredictionAndError(input, firstTreeWeight, 
firstTreeModel, loss)
     predErrorCheckpointer.update(predError)
 
 Review comment:
   it would be nice if we could checkpoint the weighted instead of unweighted 
prediction error, which ties into the earlier comment on why methods like 
computeInitialPredictionAndError can't return the weighted prediction error

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to