GitHub user catap opened a pull request:
https://github.com/apache/spark/pull/4304
PCA wrapper for easy transform vectors
I implement a simple PCA wrapper for easy transform of vectors by PCA for
example LabeledPoint or another complicated structure.
Example of usage:
```
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.feature.PCA
val data = sc.textFile("data/mllib/ridge-data/lpsa.data").map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split('
').map(_.toDouble)))
}.cache()
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
val pca = PCA.create(training.first().features.size/2,
data.map(_.features))
val training_pca = training.map(p => p.copy(features =
pca.transform(p.features)))
val test_pca = test.map(p => p.copy(features = pca.transform(p.features)))
val numIterations = 100
val model = LinearRegressionWithSGD.train(training, numIterations)
val model_pca = LinearRegressionWithSGD.train(training_pca, numIterations)
val valuesAndPreds = test.map { point =>
val score = model.predict(point.features)
(score, point.label)
}
val valuesAndPreds_pca = test_pca.map { point =>
val score = model_pca.predict(point.features)
(score, point.label)
}
val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()
val MSE_pca = valuesAndPreds_pca.map{case(v, p) => math.pow((v - p),
2)}.mean()
println("Mean Squared Error = " + MSE)
println("PCA Mean Squared Error = " + MSE_pca)
```
You can merge this pull request into a Git repository by running:
$ git pull https://github.com/catap/spark pca
Alternatively you can review and apply these changes as the patch at:
https://github.com/apache/spark/pull/4304.patch
To close this pull request, make a commit to your master/trunk branch
with (at least) the following in the commit message:
This closes #4304
----
commit c71af4ad718be60e231bb10e39211f1acb1b04ab
Author: Kirill A. Korinskiy <[email protected]>
Date: 2015-02-02T04:24:52Z
PCA wrapper for easy transform vectors
I implement a simple PCA wrapper for easy transform of vectors by PCA for
example LabeledPoint or another complicated structure.
Example of usage:
```
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.feature.PCA
val data = sc.textFile("data/mllib/ridge-data/lpsa.data").map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split('
').map(_.toDouble)))
}.cache()
val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0).cache()
val test = splits(1)
val pca = PCA.create(training.first().features.size/2,
data.map(_.features))
val training_pca = training.map(p => p.copy(features =
pca.transform(p.features)))
val test_pca = test.map(p => p.copy(features = pca.transform(p.features)))
val numIterations = 100
val model = LinearRegressionWithSGD.train(training, numIterations)
val model_pca = LinearRegressionWithSGD.train(training_pca, numIterations)
val valuesAndPreds = test.map { point =>
val score = model.predict(point.features)
(score, point.label)
}
val valuesAndPreds_pca = test_pca.map { point =>
val score = model_pca.predict(point.features)
(score, point.label)
}
val MSE = valuesAndPreds.map{case(v, p) => math.pow((v - p), 2)}.mean()
val MSE_pca = valuesAndPreds_pca.map{case(v, p) => math.pow((v - p),
2)}.mean()
println("Mean Squared Error = " + MSE)
println("PCA Mean Squared Error = " + MSE_pca)
```
----
---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]