cloud-fan commented on a change in pull request #26102: [SPARK-29448][SQL]
Support the `INTERVAL` type by Parquet datasource
URL: https://github.com/apache/spark/pull/26102#discussion_r334474170
##########
File path:
sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/parquet/ParquetRowConverter.scala
##########
@@ -325,6 +325,26 @@ private[parquet] class ParquetRowConverter(
override def set(value: Any): Unit =
updater.set(value.asInstanceOf[InternalRow].copy())
})
+ case CalendarIntervalType
+ if parquetType.asPrimitiveType().getPrimitiveTypeName ==
FIXED_LEN_BYTE_ARRAY =>
+ new ParquetPrimitiveConverter(updater) {
+ override def addBinary(value: Binary): Unit = {
+ assert(
+ value.length() == 12,
+ "Intervals are expected to be stored in 12-byte fixed len byte
array, " +
+ s"but got a ${value.length()}-byte array.")
+
+ val buf = value.toByteBuffer.order(ByteOrder.LITTLE_ENDIAN)
+ val milliseconds = buf.getInt
+ var microseconds = milliseconds * DateTimeUtils.MICROS_PER_MILLIS
+ val days = buf.getInt
+ val daysInUs = Math.multiplyExact(days,
DateTimeUtils.MICROS_PER_DAY)
Review comment:
Parquet stores # of days as a separated field because one logical day
interval can be 23 or 24 or 25 hours in case of daylight saving. If we convert
parquet interval to Spark interval, it's not a truncation but losing
information.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]