zhengruifeng commented on issue #26398: [SPARK-29756][ML] CountVectorizer 
forget to unpersist intermediate rdd
URL: https://github.com/apache/spark/pull/26398#issuecomment-549751299
 
 
   ```scala
   scala> val df = spark.createDataFrame(Seq(
        |       (0, Array("a", "b", "c")),
        |       (1, Array("a", "b", "b", "c", "a"))
        |     )).toDF("id", "words")
   df: org.apache.spark.sql.DataFrame = [id: int, words: array<string>]
   
   scala> import org.apache.spark.ml.feature._
   import org.apache.spark.ml.feature._
   
   scala> val cvModel: CountVectorizerModel = new 
CountVectorizer().setInputCol("words").setOutputCol("features").setVocabSize(3).setMinDF(2).fit(df)
   cvModel: org.apache.spark.ml.feature.CountVectorizerModel = 
cntVec_5edcfe4828c2
   
   scala> sc.getPersistentRDDs
   res0: scala.collection.Map[Int,org.apache.spark.rdd.RDD[_]] = Map(9 -> 
MapPartitionsRDD[9] at map at CountVectorizer.scala:223)
   
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to