imback82 commented on a change in pull request #26593: [SPARK-29890][SQL] 
DataFrameNaFunctions.fill should handle duplicate columns
URL: https://github.com/apache/spark/pull/26593#discussion_r349416582
 
 

 ##########
 File path: 
sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
 ##########
 @@ -468,12 +477,26 @@ final class DataFrameNaFunctions private[sql](df: 
DataFrame) {
       s"Unsupported value type ${v.getClass.getName} ($v).")
   }
 
+  private def toAttributes(cols: Seq[String]): Seq[Attribute] = {
+    def resolve(colName: String) : Attribute = {
+      df.col(colName).named.toAttribute match {
+        case a: Attribute => a
+        case _ => throw new IllegalArgumentException(s"'$colName' is not a top 
level column.")
 
 Review comment:
   The nested fields are not supported since the name is checked first against 
`df.schema.fields` which contains the top-level field, and these do not become 
candidates for `fill`. `*` is handled the same way and it is ignored. I can 
capture this behavior in the unit test.
   
   Also, what's the best way to convert `Column` to `Attribute`? Now that we 
have a single point of entry `def fillValue[T](value: T, cols: 
Seq[Attribute])`, we need to convert `Column` (result of `df.col`) to 
`Attribute`.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to