cloud-fan commented on a change in pull request #26738: [SPARK-30082][SQL] Do
not replace Zeros when replacing NaNs
URL: https://github.com/apache/spark/pull/26738#discussion_r353008601
##########
File path:
sql/core/src/main/scala/org/apache/spark/sql/DataFrameNaFunctions.scala
##########
@@ -456,11 +456,23 @@ final class DataFrameNaFunctions private[sql](df:
DataFrame) {
val keyExpr = df.col(col.name).expr
def buildExpr(v: Any) = Cast(Literal(v), keyExpr.dataType)
val branches = replacementMap.flatMap { case (source, target) =>
- Seq(buildExpr(source), buildExpr(target))
+ if (isNaN(source) || isNaN(target)) {
+ col.dataType match {
+ case IntegerType | LongType | ShortType | ByteType => Seq.empty
Review comment:
checked with scala
```
scala> Float.NaN == 0
res0: Boolean = false
scala> Float.NaN.toInt == 0
res1: Boolean = true
```
This is also true in Spark. When comparing float and int, we cast int to
float to compare, so `NaN != 0`.
I think it's a bug that we cast the value to the column type and compare. We
shouldn't do any cast and let the type coercion rules to do proper cast for
`CaseKeyWhen`
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]