huaxingao commented on a change in pull request #26739: 
[SPARK-29967][ML][PYTHON] KMeans support instance weighting
URL: https://github.com/apache/spark/pull/26739#discussion_r353820109
 
 

 ##########
 File path: mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala
 ##########
 @@ -278,30 +287,32 @@ class KMeans private (
       val bcCenters = sc.broadcast(centers)
 
       // Find the new centers
-      val collected = data.mapPartitions { points =>
+      val collected = data.mapPartitions { pointsAndWeights =>
         val thisCenters = bcCenters.value
         val dims = thisCenters.head.vector.size
 
         val sums = Array.fill(thisCenters.length)(Vectors.zeros(dims))
-        val counts = Array.fill(thisCenters.length)(0L)
 
-        points.foreach { point =>
-          val (bestCenter, cost) = 
distanceMeasureInstance.findClosest(thisCenters, point)
+        // clusterWeightSum is needed to calculate cluster center
+        // cluster center =
+        //     sample1 * weight1/clusterWeightSum + sample2 * 
weight2/clusterWeightSum + ...
+        val clusterWeightSum = Array.fill(thisCenters.length)(0.0)
+
+        pointsAndWeights.foreach { case (point, weight) =>
+          var (bestCenter, cost) = 
distanceMeasureInstance.findClosest(thisCenters, point)
+          cost *= weight
           costAccum.add(cost)
-          distanceMeasureInstance.updateClusterSum(point, sums(bestCenter))
-          counts(bestCenter) += 1
+          distanceMeasureInstance.updateClusterSum(point, sums(bestCenter), 
weight)
+          clusterWeightSum(bestCenter) += weight
         }
 
-        counts.indices.filter(counts(_) > 0).map(j => (j, (sums(j), 
counts(j)))).iterator
-      }.reduceByKey { case ((sum1, count1), (sum2, count2)) =>
+        clusterWeightSum.indices.filter(clusterWeightSum(_) > 0)
+          .map(j => (j, (sums(j), clusterWeightSum(j)))).iterator
+      }.reduceByKey { case ((sum1, clusterWeightSum1), (sum2, 
clusterWeightSum2)) =>
         axpy(1.0, sum2, sum1)
-        (sum1, count1 + count2)
+        (sum1, clusterWeightSum1 + clusterWeightSum2)
       }.collectAsMap()
 
-      if (iteration == 0) {
-        instr.foreach(_.logNumExamples(collected.values.map(_._2).sum))
-      }
-
 
 Review comment:
   Updated. Thanks!
   I also added ```logSumOfWeights```. I will update other algs that has 
weightCol once this PR is merged. 

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to