zhengruifeng commented on a change in pull request #26803: [SPARK-30178][ML] 
RobustScaler support large numFeatures
URL: https://github.com/apache/spark/pull/26803#discussion_r356377461
 
 

 ##########
 File path: mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala
 ##########
 @@ -147,49 +146,43 @@ class RobustScaler (override val uid: String)
 
   override def fit(dataset: Dataset[_]): RobustScalerModel = {
     transformSchema(dataset.schema, logging = true)
-    val localRelativeError = $(relativeError)
 
-    val summaries = dataset.select($(inputCol)).rdd.map {
-      case Row(vec: Vector) => vec
-    }.mapPartitions { iter =>
-      var agg: Array[QuantileSummaries] = null
-      while (iter.hasNext) {
-        val vec = iter.next()
-        if (agg == null) {
-          agg = Array.fill(vec.size)(
-            new QuantileSummaries(QuantileSummaries.defaultCompressThreshold, 
localRelativeError))
-        }
-        require(vec.size == agg.length,
-          s"Number of dimensions must be ${agg.length} but got ${vec.size}")
-        var i = 0
-        while (i < vec.size) {
-          agg(i) = agg(i).insert(vec(i))
-          i += 1
-        }
-      }
-
-      if (agg == null) {
-        Iterator.empty
-      } else {
-        Iterator.single(agg.map(_.compress))
-      }
-    }.treeReduce { (agg1, agg2) =>
-      require(agg1.length == agg2.length)
-      var i = 0
-      while (i < agg1.length) {
-        agg1(i) = agg1(i).merge(agg2(i))
-        i += 1
-      }
-      agg1
-    }
+    val vectors = dataset.select($(inputCol)).rdd.map { case Row(vec: Vector) 
=> vec }
+    val numFeatures = MetadataUtils.getNumFeatures(dataset.schema($(inputCol)))
+      .getOrElse(vectors.first().size)
 
-    val (range, median) = summaries.map { s =>
-      (s.query($(upper)).get - s.query($(lower)).get,
-        s.query(0.5).get)
-    }.unzip
+    val localRelativeError = $(relativeError)
+    val localUpper = $(upper)
+    val localLower = $(lower)
+
+    val collected = vectors.flatMap { vec =>
+      require(vec.size == numFeatures,
+        s"Number of dimensions must be $numFeatures but got ${vec.size}")
+      Iterator.range(0, numFeatures).map { i => (i, vec(i)) }
+    }.aggregateByKey(
 
 Review comment:
   Good Idea! I will look into how to use partitionId.
   I guess in general we can add some methods in RDD/PairRDD like 
`treeAggregateByKey`/`treeReduceByKey`/`aggregateByKeyWithPartitions`

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to