huaxingao commented on a change in pull request #26858: [SPARK-30120][ML] Use
BoundedPriorityQueue for small dataset in LSH approxNearestNeighbors
URL: https://github.com/apache/spark/pull/26858#discussion_r357387630
##########
File path: mllib/src/main/scala/org/apache/spark/ml/feature/LSH.scala
##########
@@ -138,21 +139,31 @@ private[ml] abstract class LSHModel[T <: LSHModel[T]]
// Limit the use of hashDist since it's controversial
val hashDistUDF = udf((x: Seq[Vector]) => hashDistance(x, keyHash),
DataTypes.DoubleType)
val hashDistCol = hashDistUDF(col($(outputCol)))
-
- // Compute threshold to get around k elements.
- // To guarantee to have enough neighbors in one pass, we need (p - err)
* N >= M
- // so we pick quantile p = M / N + err
- // M: the number of nearest neighbors; N: the number of elements in
dataset
- val relativeError = 0.05
- val approxQuantile = numNearestNeighbors.toDouble / count + relativeError
val modelDatasetWithDist = modelDataset.withColumn(distCol, hashDistCol)
- if (approxQuantile >= 1) {
- modelDatasetWithDist
+ // for a small dataset, use BoundedPriorityQueue
+ if (count < 1000) {
+ val queue = new
BoundedPriorityQueue[Double](count.toInt)(Ordering[Double])
+ modelDatasetWithDist.collect().foreach { case Row(keys, values,
distCol: Double) =>
+ queue += distCol
+ }
+ var sortedDistCol = queue.toArray.sorted(Ordering[Double])
+ queue.clear()
+ modelDatasetWithDist.filter(col(distCol) <=
sortedDistCol(numNearestNeighbors - 1))
Review comment:
Will fix this. Thanks!
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]