srowen commented on a change in pull request #26803: [SPARK-30178][ML]
RobustScaler support large numFeatures
URL: https://github.com/apache/spark/pull/26803#discussion_r358861724
##########
File path: mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala
##########
@@ -147,49 +146,73 @@ class RobustScaler (override val uid: String)
override def fit(dataset: Dataset[_]): RobustScalerModel = {
transformSchema(dataset.schema, logging = true)
- val localRelativeError = $(relativeError)
- val summaries = dataset.select($(inputCol)).rdd.map {
- case Row(vec: Vector) => vec
- }.mapPartitions { iter =>
- var agg: Array[QuantileSummaries] = null
- while (iter.hasNext) {
- val vec = iter.next()
+ val vectors = dataset.select($(inputCol)).rdd.map { case Row(vec: Vector)
=> vec }
+ val numFeatures = MetadataUtils.getNumFeatures(dataset.schema($(inputCol)))
+ .getOrElse(vectors.first().size)
+
+ val localRelativeError = $(relativeError)
+ val localUpper = $(upper)
+ val localLower = $(lower)
+
+ // each featureIndex and its QuantileSummaries
+ val summaries = if (numFeatures < 1000) {
Review comment:
I see, so you have both old and new impl here. That complexity isn't great,
but it does avoid performance regression while fixing the problem.
Is it possible to add a test with a lot of features, but not much data? just
to exercise the code path.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]