Consider
integrate(f(x,y),x*y).

do you compute   d(x*y)  as x*dy+y*dx and compute    integrate(f(x)
*x,y) + integrate(f(x)*y,x)?


Here's another interpretation of variable = x^2...

integrate(f(x),x^2)  =  integrate(integrate(f(x),x),x).
that is, an iterated integral.  This is like

(d ^2 f(x))/dx^2   notation for derivatives, where the derivative is
definitely NOT with respect to x^2.

Blame Newton, I think, or maybe Leibniz?

RJF



--~--~---------~--~----~------------~-------~--~----~
To post to this group, send an email to [email protected]
To unsubscribe from this group, send an email to 
[email protected]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to