2009/6/4 Rhys Ulerich <[email protected]>: > > Is there an expand or simplify method similar to Mathematica's > ComplexExpand (http://documents.wolfram.com/mathematica/functions/ > ComplexExpand) ? I have several expressions that use exponentials > with imaginary arguments that I know will kick back a real result, but > I'm having a rough time getting them to simplify... > > For example, > > $-\frac{4 i \left(-1+e^{2 i x}\right) \left(1+e^{3 t+i x}+e^{2 i x} > \right)}{1+2 e^{3 t+i x}+4 e^{4 t+2 i x}+2 e^{3 t+3 i x}+e^{4 i x}}$ > > becomes > > $\frac{4 \left(e^{3 t}+2 \cos(x)\right) \sin(x)}{2 e^{4 t}+2 e^{3 t} > \cos(x)+\cos(2 x)}$ > > when run through ComplexExpand. >
Could you post actual Sage code, just to be clear? Also, exactly what version of Sage are you using? William --~--~---------~--~----~------------~-------~--~----~ To post to this group, send email to [email protected] To unsubscribe from this group, send email to [email protected] For more options, visit this group at http://groups.google.com/group/sage-support URLs: http://www.sagemath.org -~----------~----~----~----~------~----~------~--~---
