2009/6/4 Rhys Ulerich <[email protected]>:
>
> Is there an expand or simplify method similar to Mathematica's
> ComplexExpand (http://documents.wolfram.com/mathematica/functions/
> ComplexExpand) ?  I have several expressions that use exponentials
> with imaginary arguments that I know will kick back a real result, but
> I'm having a rough time getting them to simplify...
>
> For example,
>
> $-\frac{4 i \left(-1+e^{2 i x}\right) \left(1+e^{3 t+i x}+e^{2 i x}
> \right)}{1+2 e^{3 t+i x}+4 e^{4 t+2 i x}+2 e^{3 t+3 i x}+e^{4 i x}}$
>
> becomes
>
> $\frac{4 \left(e^{3 t}+2 \cos(x)\right) \sin(x)}{2 e^{4 t}+2 e^{3 t}
> \cos(x)+\cos(2 x)}$
>
> when run through ComplexExpand.
>

Could you post actual Sage code, just to be clear?  Also, exactly what
version of Sage are you using?

William

--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---

Reply via email to