Is there an expand or simplify method similar to Mathematica's
ComplexExpand (http://documents.wolfram.com/mathematica/functions/
ComplexExpand) ? I have several expressions that use exponentials
with imaginary arguments that I know will kick back a real result, but
I'm having a rough time getting them to simplify...
For example,
$-\frac{4 i \left(-1+e^{2 i x}\right) \left(1+e^{3 t+i x}+e^{2 i x}
\right)}{1+2 e^{3 t+i x}+4 e^{4 t+2 i x}+2 e^{3 t+3 i x}+e^{4 i x}}$
becomes
$\frac{4 \left(e^{3 t}+2 \cos(x)\right) \sin(x)}{2 e^{4 t}+2 e^{3 t}
\cos(x)+\cos(2 x)}$
when run through ComplexExpand.
Thank you for your time,
Rhys
--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to
[email protected]
For more options, visit this group at
http://groups.google.com/group/sage-support
URLs: http://www.sagemath.org
-~----------~----~----~----~------~----~------~--~---