#5484: improve quotients of univariate polynomial rings
--------------------------------+-------------------------------------------
 Reporter:  AlexGhitza          |       Owner:  was       
     Type:  enhancement         |      Status:  new       
 Priority:  major               |   Milestone:  sage-3.4.1
Component:  algebraic geometry  |    Keywords:            
--------------------------------+-------------------------------------------
 Roi Docampo and I noticed the following at Sage Days 14.

 This works:
 {{{
 sage: R.<x,y> = ZZ[]
 sage: R.quo(R.ideal(2))
 Quotient of Multivariate Polynomial Ring in x, y over Integer Ring by the
 ideal (2)
 }}}

 But this doesn't:
 {{{
 sage: R.<x> = ZZ[]
 sage: R.quo(R.ideal(2))
 ---------------------------------------------------------------------------
 TypeError                                 Traceback (most recent call
 last)

 /home/aghitza/.sage/temp/cartan/12118/_home_aghitza__sage_init_sage_0.py
 in <module>()

 /opt/sage/local/lib/python2.5/site-packages/sage/rings/ring.so in
 sage.rings.ring.CommutativeRing.quo (sage/rings/ring.c:5717)()

 /opt/sage/local/lib/python2.5/site-packages/sage/rings/ring.so in
 sage.rings.ring.CommutativeRing.quotient (sage/rings/ring.c:5624)()

 /opt/sage/local/lib/python2.5/site-packages/sage/rings/quotient_ring.pyc
 in QuotientRing(R, I, names)
     120     try:
     121         if I.is_principal():
 --> 122             return R.quotient_by_principal_ideal(I.gen(), names)
     123     except (AttributeError, NotImplementedError):
     124         pass

 /opt/sage/local/lib/python2.5/site-
 packages/sage/rings/polynomial/polynomial_ring.pyc in
 quotient_by_principal_ideal(self, f, names)
    1004         """
    1005         import sage.rings.polynomial.polynomial_quotient_ring
 -> 1006         return
 sage.rings.polynomial.polynomial_quotient_ring.PolynomialQuotientRing(self,
 f, names)
    1007
    1008

 /opt/sage/local/lib/python2.5/site-
 packages/sage/rings/polynomial/polynomial_quotient_ring.pyc in
 PolynomialQuotientRing(ring, polynomial, names)
     133     c = polynomial.leading_coefficient()
     134     if not c.is_unit():
 --> 135         raise TypeError, "polynomial must have unit leading
 coefficient"
     136     R = ring.base_ring()
     137     if isinstance(R, sage.rings.integral_domain.IntegralDomain):

 TypeError: polynomial must have unit leading coefficient
 }}}

-- 
Ticket URL: <http://trac.sagemath.org/sage_trac/ticket/5484>
Sage <http://sagemath.org/>
Sage - Open Source Mathematical Software: Building the Car Instead of 
Reinventing the Wheel

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/sage-trac?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to