#15780: Increase Performance in Projective Morphism
-------------------------------------+-------------------------------------
Reporter: drose | Owner: drose
Type: enhancement | Status: needs_work
Priority: minor | Milestone: sage-6.2
Component: algebraic | Resolution:
geometry | Merged in:
Keywords: Projective, | Reviewers: Ben Hutz
Morphism | Work issues:
Authors: Dillon Rose | Commit:
Report Upstream: N/A | 52ec0b39daba695f9c11a3727304f0b4b9e0deff
Branch: u/drose/15780 | Stopgaps:
Dependencies: |
-------------------------------------+-------------------------------------
Comment (by bhutz):
Testing functionality. Everywhere where the evaluation works it gives the
right answer. However, there are several places where you can no longer do
the evaluation which give a variety of errors. These all previously
worked.
{{{
T.<z>=PowerSeriesRing(ZZ)
P.<x,y>=ProjectiveSpace(T,1)
H=End(P)
f=H([x^2+x*y,y^2])
Q=P(z,1)
f(Q)
}}}
{{{
T.<z>=LaurentSeriesRing(ZZ)
P.<x,y>=ProjectiveSpace(T,1)
H=End(P)
f=H([x^2+x*y,y^2])
Q=P(z,1)
f(Q)
}}}
{{{
T.<z>=PolynomialRing(Qp(7))
I=T.ideal(z^3)
P.<x,y>=ProjectiveSpace(T.quotient_ring(I),1)
H=End(P)
f=H([x^2+x*y,y^2])
Q=P(z^2,1)
f(Q)
}}}
{{{
T.<z>=PolynomialRing(CC)
I=T.ideal(z^3)
P.<x,y>=ProjectiveSpace(T.quotient_ring(I),1)
H=End(P)
f=H([x^2+x*y,y^2])
Q=P(z^2,1)
f(Q)
}}}
{{{
T.<z>=LaurentSeriesRing(CC)
R.<t>=PolynomialRing(T)
P.<x,y>=ProjectiveSpace(R,1)
H=End(P)
f=H([x^2+x*y,y^2])
F=f.dehomogenize(1)
Q=P(t^2,z)
f(Q)
}}}
--
Ticket URL: <http://trac.sagemath.org/ticket/15780#comment:8>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/groups/opt_out.