#16087: Limit roots in the geometric representation of Coxeter groups
-------------------------------------------------+-------------------------
       Reporter:  nthiery                        |        Owner:
           Type:  enhancement                    |       Status:  new
       Priority:  major                          |    Milestone:  sage-6.2
      Component:  group theory                   |   Resolution:
       Keywords:  days57, plot, coxeter          |    Merged in:
        Authors:  Jean-Philippe Labbé, Vivien    |    Reviewers:
  Ripoll                                         |  Work issues:
Report Upstream:  N/A                            |       Commit:
         Branch:                                 |     Stopgaps:
   Dependencies:                                 |
-------------------------------------------------+-------------------------
Description changed by chapoton:

Old description:

> Related tickets:
>    - [ ] http://trac.sagemath.org/ticket/9290
>    - [ ] http://trac.sagemath.org/ticket/13248
>
> TODO:
>   - Cleanup this description!!!!!
>
>   Matrix representation for Coxeter groups
>   - [ ] Root space for general Coxeter groups
>
>         sage: L = RootSystem(<"generalized" coxeter matrix>).root_space()
>         sage: W = L.reflection_group()    returns an instance of
> "CoxeterMatrixGroup"
>
>   - [ ] Generalize CoxeterMatrixGroup from WeylGroup
>         http://trac.sagemath.org/ticket/15703
>         Make it full featured
>   - [ ] Add a category for Lorenzian/HyperbolicCoxeterGroups
>         Inside the hierarchy:
>         CoxeterGroups
>         FiniteCoxeterGroups
>         WeylGroups
>         Lorenzian/HyperbolicCoxeterGroups: generic methods for Coxeter
> groups in an appropriate matrix representation
>
>   - [ ] Allow <-1 coefficients in the Coxeter diagram
>   - [ ] positive roots by depth
>   - [X] Missing: elements of the group as matrices: for free from the
> above
>   - [X] fundamental weights in the root space
>   - [X] finding all reduced words
>   - [ ] signature of the bilinear form
>   - [ ] parabolic elements / elliptic elements of the group
>         algo: build all elements, and select those by a criterion
>         of diagonalizability and max modulus of the eigenvalues
>   - [ ] Compute limit roots L.limit_roots(...)
>   - [ ] Visualize limit roots L.plot_limit_roots()

New description:

 Related tickets:
    - #9290
    - #13248

 TODO:
   - Cleanup this description!!!!!

   Matrix representation for Coxeter groups
   - [ ] Root space for general Coxeter groups

         sage: L = RootSystem(<"generalized" coxeter matrix>).root_space()
         sage: W = L.reflection_group()    returns an instance of
 "CoxeterMatrixGroup"

   - [ ] Generalize CoxeterMatrixGroup from WeylGroup
         http://trac.sagemath.org/ticket/15703
         Make it full featured
   - [ ] Add a category for Lorenzian/HyperbolicCoxeterGroups
         Inside the hierarchy:
         CoxeterGroups
         FiniteCoxeterGroups
         WeylGroups
         Lorenzian/HyperbolicCoxeterGroups: generic methods for Coxeter
 groups in an appropriate matrix representation

   - [ ] Allow <-1 coefficients in the Coxeter diagram
   - [ ] positive roots by depth
   - [X] Missing: elements of the group as matrices: for free from the
 above
   - [X] fundamental weights in the root space
   - [X] finding all reduced words
   - [ ] signature of the bilinear form
   - [ ] parabolic elements / elliptic elements of the group
         algo: build all elements, and select those by a criterion
         of diagonalizability and max modulus of the eigenvalues
   - [ ] Compute limit roots L.limit_roots(...)
   - [ ] Visualize limit roots L.plot_limit_roots()

--

--
Ticket URL: <http://trac.sagemath.org/ticket/16087#comment:3>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica, 
and MATLAB

-- 
You received this message because you are subscribed to the Google Groups 
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.

Reply via email to