#16908: Upgrade Maxima to 5.34.1
-------------------------------------+-------------------------------------
Reporter: pbruin | Owner:
Type: task | Status: needs_review
Priority: minor | Milestone: sage-6.4
Component: packages: | Resolution:
standard | Merged in:
Keywords: maxima | Reviewers:
Authors: Peter Bruin | Work issues:
Report Upstream: N/A | Commit:
Branch: | 2785ccc9b069cb55d804e43a506be7460abd8cd1
u/pbruin/16908-maxima-5.34.1 | Stopgaps:
Dependencies: |
-------------------------------------+-------------------------------------
Comment (by pbruin):
I amended the existing commit instead of adding a new one, because the
commit message mentioned the wrong Maxima version. I added the following
doctests:
{{{
#!diff
--- a/src/sage/symbolic/integration/integral.py
+++ b/src/sage/symbolic/integration/integral.py
@@ -116,6 +116,8 @@ class IndefiniteIntegral(BuiltinFunction):
sage: f = function('f')
sage: print_latex(f(x),x)
'\\int f\\left(x\\right)\\,{d x}'
+ sage: latex(integrate(tan(x)/x, x))
+ \int \frac{\tan\left(x\right)}{x}\,{d x}
"""
from sage.misc.latex import latex
if not is_SymbolicVariable(x):
@@ -236,8 +238,8 @@ class DefiniteIntegral(BuiltinFunction):
sage: f = function('f')
sage: print_latex(f(x),x,0,1)
'\\int_{0}^{1} f\\left(x\\right)\\,{d x}'
- sage: latex(integrate(1/(1+sqrt(x)),x,0,1))
- \int_{0}^{1} \frac{1}{\sqrt{x} + 1}\,{d x}
+ sage: latex(integrate(tan(x)/x, x, 0, 1))
+ \int_{0}^{1} \frac{\tan\left(x\right)}{x}\,{d x}
"""
from sage.misc.latex import latex
if not is_SymbolicVariable(x):
}}}
--
Ticket URL: <http://trac.sagemath.org/ticket/16908#comment:18>
Sage <http://www.sagemath.org>
Sage: Creating a Viable Open Source Alternative to Magma, Maple, Mathematica,
and MATLAB
--
You received this message because you are subscribed to the Google Groups
"sage-trac" group.
To unsubscribe from this group and stop receiving emails from it, send an email
to [email protected].
To post to this group, send email to [email protected].
Visit this group at http://groups.google.com/group/sage-trac.
For more options, visit https://groups.google.com/d/optout.